login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A294638 E.g.f. satisfies: A'(x) = A(x) * A(x^2). 2
1, 1, 1, 3, 9, 33, 153, 963, 6129, 47457, 393489, 3689379, 36673209, 410924097, 4810169961, 64694478627, 878318278497, 13230037503297, 203967546446241, 3494178651687363, 60117798742663401, 1137159539308348641, 21683284489630748601, 452680959717183978243, 9454328250188008785489, 214087305044257976127393, 4862802200825123466537393, 119970186740330465448543843, 2944202974922987534742898329 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,4

LINKS

Paul D. Hanna, Table of n, a(n) for n = 0..520

FORMULA

E.g.f. A(x) = Sum_{n>=0} a(n) * x^n/n! satisfies:

(1) A(x) = exp( Integral A(x^2) dx ).

(2) A(x) = 1/A(-x).

(3) A(x) = exp( Sum_{n>=0} a(n) * x^(2*n+1) / ((2*n+1)*n!) ) .

(4) A(x) = exp( Sum_{n>=0} (2*n)!/n! * a(n) * x^(2*n+1)/(2*n+1)! ).

EXAMPLE

E.g.f.: A(x) = 1 + x + x^2/2! + 3*x^3/3! + 9*x^4/4! + 33*x^5/5! + 153*x^6/6! + 963*x^7/7! + 6129*x^8/8! + 47457*x^9/9! + 393489*x^10/10! + 3689379*x^11/11! + 36673209*x^12/12! + 410924097*x^13/13! + 4810169961*x^14/14! + 64694478627*x^15/15! + 878318278497*x^16/16! + 13230037503297*x^17/17! + 203967546446241*x^18/18! + 3494178651687363*x^19/19! + ...

such that A'(x) = A(x) * A(x^2).

Also, A(x) = exp( Integral A(x^2) dx ).

RELATED SERIES.

The logarithm of the e.g.f. is an odd function that begins:

log(A(x)) = x + x^3/3 + x^5/(5*2!) + 3*x^7/(7*3!) + 9*x^9/(9*4!) + 33*x^11/(11*5!) + 153*x^13/(13*6!) + 963*x^15/(15*7!) + 6129*x^17/(17*8!) + 47457*x^19/(19*9!) + 393489*x^21/(21*10!) +...+ a(n) * x^(2*n+1)/((2*n+1)*n!) +...

which equals Integral A(x^2) dx.

Explicitly,

log(A(x)) = x + 2*x^3/3! + 12*x^5/5! + 360*x^7/7! + 15120*x^9/9! + 997920*x^11/11! + 101787840*x^13/13! + 16657280640*x^15/15! + 3180450873600*x^17/17! + 837294557299200*x^19/19! +...+ (2*n)!/n! * a(n) * x^(2*n+1)/(2*n+1)! +...

PROG

(PARI) {a(n) = my(A=1); for(i=1, #binary(n+1), A = exp( intformal( subst(A, x, x^2) +x*O(x^n)) ) ); n!*polcoeff(A, n)}

for(n=0, 30, print1(a(n), ", "))

CROSSREFS

Cf. A138292.

Sequence in context: A009220 A294035 A007489 * A201968 A264237 A097677

Adjacent sequences:  A294635 A294636 A294637 * A294639 A294640 A294641

KEYWORD

nonn

AUTHOR

Paul D. Hanna, Nov 05 2017

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 18 21:25 EDT 2019. Contains 325144 sequences. (Running on oeis4.)