Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.
%I #28 Mar 04 2018 04:46:36
%S 4,12,12,28,12,52,12,60,36,68,12,132,12,84,76,124,12,172,12,180,92,
%T 116,12,292,52,132,108,228,12,340,12,252,124,164,108,444,12,180,140,
%U 404,12,436,12,324,268,212,12,612,68,348,172,372,12,532,140,516,188,260,12,868,12,276
%N a(n) = 8*(sigma(n) - n + (1/2)).
%H Muniru A Asiru, <a href="/A294628/b294628.txt">Table of n, a(n) for n = 1..2000</a>
%F a(n) = 4*A294015(n).
%F a(n) = 8*(A001065(n) + (1/2)).
%F a(n) = 8*(A000203(n) - n + (1/2)).
%F a(n) = A239050(n) - 4*A235796(n).
%F a(n) = A017113(n-1) - 8*A235796(n).
%p with(numtheory): seq(sigma(8*n-1)/8, n=1..10^3); # _Muniru A Asiru_, Mar 04 2018
%t a[n_] := 8 (DivisorSigma[1, n] - n) + 4; Array[a, 62] (* _Robert G. Wilson v_, Dec 12 2017 *)
%o (GAP) List([1..10^5],n->8*(Sigma(n)-n+(1/2))); # _Muniru A Asiru_, Mar 04 2018
%Y Partial sums give A294629.
%Y Cf. A001065, A017113, A235796, A237593, A239050, A294015, A294016, A294017, A294630.
%K nonn
%O 1,1
%A _Omar E. Pol_, Nov 05 2017