login
A294602
a(n) = pi(n-1) - pi(floor(n/2)), where pi is A000720.
4
0, 0, 1, 1, 1, 1, 1, 2, 2, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 4, 4, 3, 3, 4, 4, 3, 3, 3, 3, 4, 4, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 6, 6, 5, 5, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 10, 10, 9, 9, 10, 10, 9
OFFSET
1,8
COMMENTS
Number of primes in the interval (n/2, n).
Number of primes among the larger parts of the partitions of n into two distinct parts. For n=8, the partitions of 8 into two distinct parts are (7,1), (6,2), (5,3); 7 and 5 are prime so a(8) = 2. - Wesley Ivan Hurt, Apr 07 2018
FORMULA
a(n) = A056171(n) - A010051(n).
a(n) = Sum_{i=1..floor((n-1)/2)} A010051(n-i). - Wesley Ivan Hurt, Apr 07 2018
EXAMPLE
a(8) = 2 because there are 2 primes between 4 and 8: 5, 7.
a(19) = 3 because there are 3 primes between 9 and 19: 11, 13, 17.
MAPLE
A294602 := proc(n)
numtheory[pi](n-1)-numtheory[pi](floor(n/2)) ;
end proc:
seq(A294602(n), n=1..120) ; # R. J. Mathar, Dec 17 2017
MATHEMATICA
Array[PrimePi[# - 1] - PrimePi[Floor[#/2]] &, 86] (* Michael De Vlieger, Nov 03 2017 *)
PROG
(Magma) [0, 0] cat [#PrimesInInterval(Floor(n/2)+1, n-1): n in [3..86]];
(PARI) vector(86, n, primepi(n-1)-primepi(n\2))
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
STATUS
approved