%I #17 Nov 07 2017 03:03:05
%S 1,3,5,7,9,10,12,14,16,18,21,23,25,27,29,30,32,34,36,38,41,43,45,47,
%T 49,50,52,54,56,58,61,63,65,67,69,70,72,74,76,78,81,83,85,87,89,90,92,
%U 94,96,98,100,102,104,106,108,120,122,124,126,128,140,142,144,146,148,160,162,164,166,168,180
%N Numbers with exactly one odd decimal digit.
%C First differs from A054684 at position 56.
%C Numbers n such that A196564(n) = 1. - _Felix Fröhlich_, Nov 03 2017
%C There are (1+4*d)*5^(d-1) = 5*A081040(d+1) terms with d digits. - _Robert Israel_, Nov 06 2017
%H Robert Israel, <a href="/A294601/b294601.txt">Table of n, a(n) for n = 1..10000</a>
%p Res:= NULL:
%p for t from 0 to 1000 do
%p if nops(select(type,convert(t,base,10),odd))=1 then Res:= Res,t fi
%p od:
%p Res;
%t Select[Range@ 200, Count[IntegerDigits@ #, _?OddQ] == 1 &] (* _Michael De Vlieger_, Nov 03 2017 *)
%o (PARI) a196564(n) = #select(x->x%2, digits(n)) \\ after _Michel Marcus_
%o is(n) = a196564(n)==1 \\ _Felix Fröhlich_, Nov 03 2017
%Y Cf. A014263, A054684, A081040, A196564, A275775.
%K nonn,base,look
%O 1,2
%A _Robert Israel_, Nov 03 2017