login
A294537
Solution of the complementary equation a(n) = a(n-1) + a(n-2) + b(n-2) + n, where a(0) = 1, a(1) = 2, b(0) = 3.
2
1, 2, 8, 17, 34, 62, 109, 187, 314, 521, 857, 1402, 2285, 3715, 6030, 9778, 15843, 25658, 41540, 67239, 108822, 176106, 284975, 461130, 746156, 1207339, 1953550, 3160946, 5114555, 8275562, 13390180, 21665808, 35056056, 56721934, 91778062, 148500070
OFFSET
0,2
COMMENTS
The increasing complementary sequences a() and b() are uniquely determined by the titular equation and initial values. See A294532 for a guide to related sequences. Conjecture: a(n)/a(n-1) -> (1 + sqrt(5))/2 = golden ratio (A001622)..
LINKS
Clark Kimberling, Complementary equations, J. Int. Seq. 19 (2007), 1-13.
EXAMPLE
a(0) = 1, a(1) = 2, b(0) = 3, so that
b(1) = 4 (least "new number")
a(2) = a(1) + a(0) + b(0) + 2 = 8
Complement: (b(n)) = (3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15, ...)
MATHEMATICA
mex := First[Complement[Range[1, Max[#1] + 1], #1]] &;
a[0] = 1; a[1] = 3; b[0] = 2;
a[n_] := a[n] = a[n - 1] + a[n - 2] + b[n - 2] + n;
b[n_] := b[n] = mex[Flatten[Table[Join[{a[n]}, {a[i], b[i]}], {i, 0, n - 1}]]];
Table[a[n], {n, 0, 40}] (* A294537 *)
Table[b[n], {n, 0, 10}]
CROSSREFS
Sequence in context: A066564 A357576 A034972 * A294548 A061150 A160189
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Nov 03 2017
STATUS
approved