The increasing complementary sequences a() and b() are uniquely determined by the titular equation and initial values, which, for the sequences in the following guide, are a(0) = 1, a(1) = 2, b(0) = 3:
a(n) = a(n-1) + a(n-2) + b(n-2) A294532
a(n) = a(n-1) + a(n-2) + b(n-2) + 1 A294533
a(n) = a(n-1) + a(n-2) + b(n-2) + 2 A294534
a(n) = a(n-1) + a(n-2) + b(n-2) + 3 A294535
a(n) = a(n-1) + a(n-2) + b(n-2) - 1 A294536
a(n) = a(n-1) + a(n-2) + b(n-2) + n A294537
a(n) = a(n-1) + a(n-2) + b(n-2) + 2n A294538
a(n) = a(n-1) + a(n-2) + b(n-2) + n - 1 A294539
a(n) = a(n-1) + a(n-2) + b(n-2) + 2n - 1 A294540
a(n) = a(n-1) + a(n-2) + b(n-1) A294541
a(n) = a(n-1) + a(n-2) + b(n-1) + 1 A294542
a(n) = a(n-1) + a(n-2) + b(n-1) + 2 A294543
a(n) = a(n-1) + a(n-2) + b(n-1) + 3 A294544
a(n) = a(n-1) + a(n-2) + b(n-1) - 1 A294545
a(n) = a(n-1) + a(n-2) + b(n-1) + n A294546
a(n) = a(n-1) + a(n-2) + b(n-1) + 2n A294547
a(n) = a(n-1) + a(n-2) + b(n-1) + n - 1 A294548
a(n) = a(n-1) + a(n-2) + b(n-1) + n + 1 A294549
a(n) = a(n-1) + a(n-2) + b(n-1) + b(n-2) A294550
a(n) = a(n-1) + a(n-2) + b(n-1) + b(n-2) + 1 A294551
a(n) = a(n-1) + a(n-2) + b(n-1) + b(n-2) + n A294552
a(n) = a(n-1) + a(n-2) + b(n-1) + b(n-2) - n A294553
a(n) = a(n-1) + a(n-2) + b(n-1) + b(n-2) + 2 A294554
a(n) = a(n-1) + a(n-2) + b(n-1) + b(n-2) + 3 A294555
a(n) = a(n-1) + a(n-2) + b(n-1) + b(n-2) + n + 1 A294556
a(n) = a(n-1) + a(n-2) + b(n-1) + b(n-2) + n - 1 A294557
a(n) = a(n-1) + a(n-2) + b(n-1) + b(n-2) + 2n A294558
a(n) = a(n-1) + a(n-2) + b(n-1) + 2*b(n-2) A294559
a(n) = a(n-1) + a(n-2) + 2*b(n-1) + 2*b(n-2) A294560
a(n) = a(n-1) + a(n-2) + 2*b(n-1) + b(n-2) A294561
a(n) = a(n-1) + a(n-2) + b(n-1) - b(n-2) + 1 A294562
a(n) = a(n-1) + a(n-2) + b(n-1) - b(n-2) + n A294563
a(n) = a(n-1) + a(n-2) + 2*b(n-1) - b(n-2) - 1 A294564
a(n) = a(n-1) + a(n-2) + 2*b(n-1) - b(n-2) - 3 A294565
Conjecture: for every sequence listed here, a(n)/a(n-1) -> (1 + sqrt(5))/2 = golden ratio (A001622).
|