login
A294502
Binomial transform of A026007.
6
1, 2, 5, 15, 45, 132, 381, 1086, 3060, 8531, 23563, 64560, 175639, 474790, 1275929, 3410180, 9068075, 23998671, 63230680, 165904474, 433596795, 1129037237, 2929620046, 7576584801, 19532878559, 50205938903, 128676829149, 328895341731, 838453003422
OFFSET
0,2
LINKS
FORMULA
a(n) = Sum_{k=0..n} binomial(n,k) * A026007(k).
a(n) ~ exp(3^(4/3) * Zeta(3)^(1/3) * n^(2/3) / 4 + (3*Zeta(3))^(2/3) * n^(1/3) / 8 - Zeta(3)/16) * Zeta(3)^(1/6) * 2^(n - 1/12) / (3^(1/3) * sqrt(Pi) * n^(2/3)).
G.f.: (1/(1 - x))*Product_{k>=1} (1 + x^k/(1 - x)^k)^k. - Ilya Gutkovskiy, Aug 19 2018
MATHEMATICA
nmax = 40; s = CoefficientList[Series[Product[(1+x^k)^k, {k, 1, nmax}], {x, 0, nmax}], x]; Table[Sum[Binomial[n, k] * s[[k+1]], {k, 0, n}], {n, 0, nmax}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Vaclav Kotesovec, Nov 01 2017
STATUS
approved