A294492 Numbers m that set records for the ratio A045763(n)/n.
Michael Thomas De Vlieger, St. Louis, Missouri 201710312230, revised 201711011530.

These numbers have an increasing proportion of nondivisors in the cototient A045763(n) with respect to n.
Example: 6 has the nondivisor 4 in the cototient, thus 1/6, while 7 has none, 8 has one (6), 9 has one (6), but
	10 has the nondivisors (4,6,8) in the cototient, thus 3/10. Since 3/10 > 1/6, 10 is the next number
	in the sequence.

n = index.
m = number that sets a record for the ratio A045763(n)/n.
A045763(m) = number of nondivisors in the cototient of m.
MN(m) = multiplicity notation of m: these are the exponents of the smallest primes that when multipled
	produce m. Example: "1 2 0 1" = 2^1 * 3^2 * 5^0 * 7^1 = 126.

See below for observations and conjectures.

  n				  m         		  A045763(m)	MN(m)
-----------------------------------------------------------------------------------------------------
  1	                          1	                          0	0                                    
  2	                          6	                          1	1 1                                  
  3	                         10	                          3	1 0 1                                
  4	                         14	                          5	1 0 0 1                              
  5	                         18	                          7	1 2                                  
  6	                         22	                          9	1 0 0 0 1                            
  7	                         26	                         11	1 0 0 0 0 1                          
  8	                         30	                         15	1 1 1                                
  9	                         42	                         23	1 1 0 1                              
 10	                         60	                         33	2 1 1                                
 11	                         66	                         39	1 1 0 0 1                            
 12	                         78	                         47	1 1 0 0 0 1                          
 13	                         90	                         55	1 2 1                                
 14	                        102	                         63	1 1 0 0 0 0 1                        
 15	                        114	                         71	1 1 0 0 0 0 0 1                      
 16	                        126	                         79	1 2 0 1                              
 17	                        138	                         87	1 1 0 0 0 0 0 0 1                    
 18	                        150	                         99	1 1 2                                
 19	                        210	                        147	1 1 1 1                              
 20	                        330	                        235	1 1 1 0 1                            
 21	                        390	                        279	1 1 1 0 0 1                          
 22	                        420	                        301	2 1 1 1                              
 23	                        510	                        367	1 1 1 0 0 0 1                        
 24	                        570	                        411	1 1 1 0 0 0 0 1                      
 25	                        630	                        463	1 2 1 1                              
 26	                       1050	                        787	1 1 2 1                              
 27	                       1470	                       1111	1 1 1 2                              
 28	                       2310	                       1799	1 1 1 1 1                            
 29	                       4620	                       3613	2 1 1 1 1                            
 30	                       6930	                       5443	1 2 1 1 1                            
 31	                      11550	                       9103	1 1 2 1 1                            
 32	                      16170	                      12763	1 1 1 2 1                            
 33	                      25410	                      20083	1 1 1 1 2                            
 34	                      30030	                      24207	1 1 1 1 1 1                          
 35	                      60060	                      48445	2 1 1 1 1 1                          
 36	                      90090	                      72715	1 2 1 1 1 1                          
 37	                     150150	                     121255	1 1 2 1 1 1                          
 38	                     210210	                     169795	1 1 1 2 1 1                          
 39	                     330330	                     266875	1 1 1 1 2 1                          
 40	                     390390	                     315415	1 1 1 1 1 2                          
 41	                     510510	                     418223	1 1 1 1 1 1 1                        
 42	                    1021020	                     836509	2 1 1 1 1 1 1                        
 43	                    1531530	                    1254859	1 2 1 1 1 1 1                        
 44	                    2552550	                    2091559	1 1 2 1 1 1 1                        
 45	                    3573570	                    2928259	1 1 1 2 1 1 1                        
 46	                    5615610	                    4601659	1 1 1 1 2 1 1                        
 47	                    6636630	                    5438359	1 1 1 1 1 2 1                        
 48	                    8678670	                    7111759	1 1 1 1 1 1 2                        
 49	                    9699690	                    8040555	1 1 1 1 1 1 1 1                      
 50	                   19399380	                   16081237	2 1 1 1 1 1 1 1                      
 51	                   29099070	                   24122047	1 2 1 1 1 1 1 1                      
 52	                   48498450	                   40203667	1 1 2 1 1 1 1 1                      
 53*	                   67897830	                   56285287	1 1 1 2 1 1 1 1                      
 54	                  106696590	                   88448527	1 1 1 1 2 1 1 1                      
 55	                  126095970	                  104530147	1 1 1 1 1 2 1 1                      
 56	                  164894730	                  136693387	1 1 1 1 1 1 2 1                      
 57	                  184294110	                  152775007	1 1 1 1 1 1 1 2                      
 58	                  223092870	                  186596999	1 1 1 1 1 1 1 1 1                    
 59	                  446185740	                  373194253	2 1 1 1 1 1 1 1 1                    
 60	                  669278610	                  559791763	1 2 1 1 1 1 1 1 1                    
 61	                 1115464350	                  932986783	1 1 2 1 1 1 1 1 1                    
 62	                 1561650090	                 1306181803	1 1 1 2 1 1 1 1 1                    
 63	                 2454021570	                 2052571843	1 1 1 1 2 1 1 1 1                    
 64	                 2900207310	                 2425766863	1 1 1 1 1 2 1 1 1                    
 65	                 3792578790	                 3172156903	1 1 1 1 1 1 2 1 1                    
 66	                 4238764530	                 3545351923	1 1 1 1 1 1 1 2 1                    
 67	                 5131136010	                 4291741963	1 1 1 1 1 1 1 1 2                    
 68	                 6469693230	                 5447822127	1 1 1 1 1 1 1 1 1 1                  
 69	                12939386460	                10895644765	2 1 1 1 1 1 1 1 1 1                  
 70	                19409079690	                16343467915	1 2 1 1 1 1 1 1 1 1                  
 71	                32348466150	                27239114215	1 1 2 1 1 1 1 1 1 1                  
 72	                45287852610	                38134760515	1 1 1 2 1 1 1 1 1 1                  
 73	                71166625530	                59926053115	1 1 1 1 2 1 1 1 1 1                  
 74	                84106011990	                70821699415	1 1 1 1 1 2 1 1 1 1                  
 75	               109984784910	                92612992015	1 1 1 1 1 1 2 1 1 1                  
 76	               122924171370	               103508638315	1 1 1 1 1 1 1 2 1 1                  
 77	               148802944290	               125299930915	1 1 1 1 1 1 1 1 2 1                  
 78	               187621103670	               157986869815	1 1 1 1 1 1 1 1 1 2                  
 79	               200560490130	               169904385683	1 1 1 1 1 1 1 1 1 1 1                
 80	               401120980260	               339808772389	2 1 1 1 1 1 1 1 1 1 1                
 81	               601681470390	               509713160119	1 2 1 1 1 1 1 1 1 1 1                
 82	              1002802450650	               849521935579	1 1 2 1 1 1 1 1 1 1 1                
 83	              1403923430910	              1189330711039	1 1 1 2 1 1 1 1 1 1 1                
 84	              2206165391430	              1868948261959	1 1 1 1 2 1 1 1 1 1 1                
 85	              2607286371690	              2208757037419	1 1 1 1 1 2 1 1 1 1 1                
 86	              3409528332210	              2888374588339	1 1 1 1 1 1 2 1 1 1 1                
 87	              3810649312470	              3228183363799	1 1 1 1 1 1 1 2 1 1 1                
 88	              4612891272990	              3907800914719	1 1 1 1 1 1 1 1 2 1 1                
 89	              5816254213770	              4927227241099	1 1 1 1 1 1 1 1 1 2 1                
 90	              6217375194030	              5267036016559	1 1 1 1 1 1 1 1 1 1 2                
 91	              7420738134810	              6317118444315	1 1 1 1 1 1 1 1 1 1 1 1              
 92	             14841476269620	             12634236890677	2 1 1 1 1 1 1 1 1 1 1 1              
 93	             22262214404430	             18951355339087	1 2 1 1 1 1 1 1 1 1 1 1              
 94	             37103690674050	             31585592235907	1 1 2 1 1 1 1 1 1 1 1 1              
 95	             51945166943670	             44219829132727	1 1 1 2 1 1 1 1 1 1 1 1              
 96	             81628119482910	             69488302926367	1 1 1 1 2 1 1 1 1 1 1 1              
 97	             96469595752530	             82122539823187	1 1 1 1 1 2 1 1 1 1 1 1              
 98	            126152548291770	            107391013616827	1 1 1 1 1 1 2 1 1 1 1 1              
 99	            140994024561390	            120025250513647	1 1 1 1 1 1 1 2 1 1 1 1              
100	            170676977100630	            145293724307287	1 1 1 1 1 1 1 1 2 1 1 1              
101	            215201405909490	            183196434997747	1 1 1 1 1 1 1 1 1 2 1 1              
102	            230042882179110	            195830671894567	1 1 1 1 1 1 1 1 1 1 2 1              
103	            274567310987970	            233733382585027	1 1 1 1 1 1 1 1 1 1 1 2              
104	            304250263527210	            260105476063019	1 1 1 1 1 1 1 1 1 1 1 1 1            
105	            608500527054420	            520210952130133	2 1 1 1 1 1 1 1 1 1 1 1 1            
106	            912750790581630	            780316428201343	1 2 1 1 1 1 1 1 1 1 1 1 1            
107	           1521251317636050	           1300527380343763	1 1 2 1 1 1 1 1 1 1 1 1 1            
108	           2129751844690470	           1820738332486183	1 1 1 2 1 1 1 1 1 1 1 1 1            
109	           3346752898799310	           2861160236771023	1 1 1 1 2 1 1 1 1 1 1 1 1            
110	           3955253425853730	           3381371188913443	1 1 1 1 1 2 1 1 1 1 1 1 1            
111	           5172254479962570	           4421793093198283	1 1 1 1 1 1 2 1 1 1 1 1 1            
112	           5780755007016990	           4942004045340703	1 1 1 1 1 1 1 2 1 1 1 1 1            
113	           6997756061125830	           5982425949625543	1 1 1 1 1 1 1 1 2 1 1 1 1            
114	           8823257642289090	           7543058806052803	1 1 1 1 1 1 1 1 1 2 1 1 1            
115	           9431758169343510	           8063269758195223	1 1 1 1 1 1 1 1 1 1 2 1 1            
116	          11257259750506770	           9623902614622483	1 1 1 1 1 1 1 1 1 1 1 2 1            
117	          12474260804615610	          10664324518907323	1 1 1 1 1 1 1 1 1 1 1 1 2            
118	          13082761331670030	          11228680258501647	1 1 1 1 1 1 1 1 1 1 1 1 1 1          
119	          26165522663340060	          22457360517011485	2 1 1 1 1 1 1 1 1 1 1 1 1 1          
120	          39248283995010090	          33686040775529515	1 2 1 1 1 1 1 1 1 1 1 1 1 1          
121	          65413806658350150	          56143401292565575	1 1 2 1 1 1 1 1 1 1 1 1 1 1          
122	          91579329321690210	          78600761809601635	1 1 1 2 1 1 1 1 1 1 1 1 1 1          
123	         143910374648370330	         123515482843673755	1 1 1 1 2 1 1 1 1 1 1 1 1 1          
124	         170075897311710390	         145972843360709815	1 1 1 1 1 2 1 1 1 1 1 1 1 1          
125	         222406942638390510	         190887564394781935	1 1 1 1 1 1 2 1 1 1 1 1 1 1          
126	         248572465301730570	         213344924911817995	1 1 1 1 1 1 1 2 1 1 1 1 1 1          
127	         300903510628410690	         258259645945890115	1 1 1 1 1 1 1 1 2 1 1 1 1 1          
128	         379400078618430870	         325631727496998295	1 1 1 1 1 1 1 1 1 2 1 1 1 1          
129	         405565601281770930	         348089088014034355	1 1 1 1 1 1 1 1 1 1 2 1 1 1          
130	         484062169271791110	         415461169565142535	1 1 1 1 1 1 1 1 1 1 1 2 1 1          
131	         536393214598471230	         460375890599214655	1 1 1 1 1 1 1 1 1 1 1 1 2 1          
132	         562558737261811290	         482833251116250715	1 1 1 1 1 1 1 1 1 1 1 1 1 2          
133	         614889782588491410	         529602053223466643	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1        
134	        1229779565176982820	        1059204106446949669	2 1 1 1 1 1 1 1 1 1 1 1 1 1 1        
135	        1844669347765474230	        1588806159670449079	1 2 1 1 1 1 1 1 1 1 1 1 1 1 1        
136	        3074448912942457050	        2648010266117447899	1 1 2 1 1 1 1 1 1 1 1 1 1 1 1        
137	        4304228478119439870	        3707214372564446719	1 1 1 2 1 1 1 1 1 1 1 1 1 1 1        
138	        6763787608473405510	        5825622585458444359	1 1 1 1 2 1 1 1 1 1 1 1 1 1 1        
139	        7993567173650388330	        6884826691905443179	1 1 1 1 1 2 1 1 1 1 1 1 1 1 1        
140	       10453126304004353970	        9003234904799440819	1 1 1 1 1 1 2 1 1 1 1 1 1 1 1        
141	       11682905869181336790	       10062439011246439639	1 1 1 1 1 1 1 2 1 1 1 1 1 1 1        
142	       14142464999535302430	       12180847224140437279	1 1 1 1 1 1 1 1 2 1 1 1 1 1 1        
143	       17831803695066250890	       15358459543481433739	1 1 1 1 1 1 1 1 1 2 1 1 1 1 1        
144	       19061583260243233710	       16417663649928432559	1 1 1 1 1 1 1 1 1 1 2 1 1 1 1        
145	       22750921955774182170	       19595275969269429019	1 1 1 1 1 1 1 1 1 1 1 2 1 1 1        
146	       25210481086128147810	       21713684182163426659	1 1 1 1 1 1 1 1 1 1 1 1 2 1 1        
147	       26440260651305130630	       22772888288610425479	1 1 1 1 1 1 1 1 1 1 1 1 1 2 1        
148	       28899819781659096270	       24891296501504423119	1 1 1 1 1 1 1 1 1 1 1 1 1 1 2        
149	       32589158477190044730	       28154196550210395195	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1      
150	       65178316954380089460	       56308393100420823157	2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1      
151	       97767475431570134190	       84462589650631283887	1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1      
152	      162945792385950223650	      140770982751052205347	1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1      
153	      228124109340330313110	      197079375851473126807	1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1      
154	      358480743249090492030	      309696162052314969727	1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1      
155	      423659060203470581490	      366004555152735891187	1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1      
156	      554015694112230760410	      478621341353577734107	1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1      
157	      619194011066610849870	      534929734453998655567	1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1      
158	      749550644975371028790	      647546520654840498487	1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1      
159	      945085595838511297170	      816471699956103262867	1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1      
160	     1010263912792891386630	      872780093056524184327	1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1      
161	     1205798863656031655010	     1041705272357786948707	1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1      
162	     1336155497564791833930	     1154322058558628791627	1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1      
163	     1401333814519171923390	     1210630451659049713087	1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1      
164	     1531690448427932102310	     1323247237859891556007	1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1      
165	     1727225399291072370690	     1492172417161154320387	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2      
166	     1922760350154212639070	     1665532558389396635999	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1    
167	     3845520700308425278140	     3331065116778793337533	2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1    
168	     5768281050462637917210	     4996597675168190104603	1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1    
169	     9613801750771063195350	     8327662791946983638743	1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1    
170	    13459322451079488473490	    11658727908725777172883	1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1    
171	    21150363851696339029770	    18320858142283364241163	1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1    
172	    24995884552004764307910	    21651923259062157775303	1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1    
173	    32686925952621614864190	    28314053492619744843583	1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1    
174	    36532446652930040142330	    31645118609398538377723	1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1    
175	    44223488053546890698610	    38307248842956125446003	1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1    
176	    55760050154472166533030	    48300444193292506048423	1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1    
177	    59605570854780591811170	    51631509310071299582563	1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1    
178	    71142132955705867645590	    61624704660407680184983	1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1    
179	    78833174356322718201870	    68286834893965267253263	1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1    
180	    82678695056631143480010	    71617900010744060787403	1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1    
181	    90369736457247994036290	    78280030244301647855683	1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1    
182	   101906298558173269870710	    88273225594638028458103	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1    
183	   113442860659098545705130	    98266420944974409060523	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2    
184	   117288381359406970983270	   101854713853518018401127	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1  
185	   234576762718813941966540	   203709427707036036933325	2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1  
186	   351865144078220912949810	   305564141560554055596595	1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1  
187	   586441906797034854916350	   509273569267590092923135	1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1  
188	   821018669515848796882890	   712982996974626130249675	1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1  
189	  1290172194953476680815970	  1120401852388698204902755	1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1  
190	  1524748957672290622782510	  1324111280095734242229295	1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1  
191	  1993902483109918506715590	  1731530135509806316882375	1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1  
192	  2228479245828732448682130	  1935239563216842354208915	1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1  
193	  2697632771266360332615210	  2342658418630914428861995	1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1  
194	  3401363059422802158514830	  2953786701752022540841615	1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1  
195	  3635939822141616100481370	  3157496129459058578168155	1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1  
196	  4339670110298057926380990	  3768624412580166690147775	1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1  
197	  4808823635735685810314070	  4176043267994238764800855	1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1  
198	  5043400398454499752280610	  4379752695701274802127395	1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1  
199	  5512553923892127636213690	  4787171551115346876780475	1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1  
200	  6216284212048569462113310	  5398299834236454988760095	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1  
201	  6920014500205011288012930	  6009428117357563100739715	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1  
202	  7154591262923825229979470	  6213137545064599138066255	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2  
203	  7858321551080267055879090	  6839699495691596202234803	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
204	 15716643102160534111758180	 13679398991383192404731749	2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
205	 23574964653240801167637270	 20519098487074788607490839	1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
206	 39291607755401335279395450	 34198497478457981013009019	1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
207	 55008250857561869391153630	 47877896469841173418527199	1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
208	 86441537061882937614669990	 75236694452607558229563559	1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1
209	102158180164043471726428170	 88916093443990750635081739	1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1
210	133591466368364539949944530	116274891426757135446118099	1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1
211	149308109470525074061702710	129954290418140327851636279	1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1
212	180741395674846142285219070	157313088400906712662672639	1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1
213	227891324981327744620493610	198351285375056289879227179	1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1
214	243607968083488278732251790	212030684366439482284745359	1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1
215	290757897389969881067526330	253068881340589059501299899	1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1
216	322191183594290949291042690	280427679323355444312336259	1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1
217	337907826696451483402800870	294107078314738636717854439	1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1
218	369341112900772551626317230	321465876297505021528890799	1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1
219	416491042207254153961591770	362504073271654598745445339	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1
220	463640971513735756296866310	403542270245804175961999879	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1
221	479357614615896290408624490	417221669237187368367518059	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1
222	526507543922377892743899030	458259866211336945584072599	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2

////// Observations //////

1. The first 27 terms (i.e., the terms m < 2310) include three types of numbers:
	a. Let k = any product of primorial A002110(i - 1) and the smallest i primes,
	b. Products k times a prime p >= prime(i) such that k < A002110(i + 1).
2. Let m with MN(m) that contains a zero be called a "turbulent" term, and m with MN(M) consisting of exponents
	greater than 0 be considered "contiguous". The 16 "turbulent" terms m appear within the first 23 terms
	and are squarefree except for 126, which is the product of A002110(2), prime(2), and prime(4).
2. Conjectural terms appear above after n = 53 (asterisked). The algorithm h(x) that furnished the conjectured 
	terms tests all numbers of the form described in Observation 1 above. We can easily produce conjectural 
	terms up to primorial A002110(40).

////// Conjectures //////

1. For m >= A002110(5) = 2310, all terms m are primorials (in A002110) or of the form p * A002110(n), 
   with prime(1) <= prime p <= prime(i).

////// Algorithms //////

A294492: Generate terms m < 10^6 (smallest 41 terms):
--------

Block[{s = Array[(# - (DivisorSigma[0, #] + EulerPhi@ # - 1))/# &, 10^6]}, 
 FirstPosition[s, #][[1]] & /@ Union@ FoldList[Max, s]]

Necessary-but-insufficient condition h(x):
------------------------------------------

h[n_] := If[n == 0, {1}, 
  Block[{P = Product[Prime@ i, {i, n - 1}], 
         Q = {1}~Join~Prime@ Range@ n, f}, 
    f[p_] := Prime@ Range[n, PrimePi@ NextPrime[Apply[Times, Prime[n + {0, 1}]]/p, -1]]; 
    Union@ Flatten@ Map[P # f[#] &, Q]]]

Multiplicity notation:
----------------------

A054841[n_] := 
 If[n == 1, {0}, 
  Function[f, 
    ReplacePart[Table[0, {PrimePi[f[[-1, 1]]]}], #] &@
     Map[PrimePi@ First@ # -> Last@ # &, f]]@ FactorInteger@ n]

Produce chart:
--------------

Block[{r = Flatten@ Array[h, 20, 0], s, t, u}, 
  s = Map[(# - (DivisorSigma[0, #] + EulerPhi@ # - 1)) &, r]; 
  t = MapIndexed[#1/r[[First@ #2]] &, s]; 
  u = Union@ FoldList[Max, MapIndexed[#1/r[[First@ #2]] &, s]]; 
  MapIndexed[{#1, #2, s[[FirstPosition[r, #2][[1]] ]], 
       StringTrim[StringDelete[ToString@ #, ","], ("{" | "}") ...] &@
        A054841@ #2} & @@ {First@ #2, 
      r[[FirstPosition[t, #1][[1]] ]]} &, u]] // TableForm

(eof)