login
A294426
Solution of the complementary equation a(n) = a(n-1) + a(n-2) + 2*b(n-1) - b(n-2) - 2, where a(0) = 1, a(1) = 3, b(0) = 2, b(1) = 4.
2
1, 3, 8, 15, 28, 49, 86, 144, 240, 395, 647, 1055, 1718, 2789, 4524, 7331, 11874, 19225, 31120, 50367, 81510, 131901, 213436, 345363, 558828, 904220, 1463078, 2367329, 3830439, 6197801, 10028274, 16226110, 26254420, 42480567, 68735025, 111215631, 179950696
OFFSET
0,2
COMMENTS
The complementary sequences a() and b() are uniquely determined by the titular equation and initial values. See A294414 for a guide to related sequences.
Conjecture: a(n)/a(n-1) -> (1 + sqrt(5))/2, the golden ratio.
LINKS
Clark Kimberling, Complementary equations, J. Int. Seq. 19 (2007), 1-13.
EXAMPLE
a(0) = 1, a(1) = 3, b(0) = 2, b(1) = 4, so that
a(2) = a(1) + a(0) + 2*b(1) - b(0) - 2 = 8
Complement: (b(n)) = (2, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, 16,...)
MATHEMATICA
mex := First[Complement[Range[1, Max[#1] + 1], #1]] &;
a[0] = 1; a[1] = 3; b[0] = 2; b[1] = 4;
a[n_] := a[n] = a[n - 1] + a[n - 2] + 2*b[n - 1] - b[n - 2] - 2;
b[n_] := b[n] = mex[Flatten[Table[Join[{a[n]}, {a[i], b[i]}], {i, 0, n - 1}]]];
Table[a[n], {n, 0, 40}] (* A294426 *)
Table[b[n], {n, 0, 10}]
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Nov 01 2017
STATUS
approved