

A294383


Solution of the complementary equation a(n) = a(n1)*b(n2) + 1, where a(0) = 1, a(1) = 3, b(0) = 2, b(1) = 4.


2



1, 3, 7, 29, 146, 877, 7017, 63154, 631541, 6946952, 83363425, 1083724526, 15172143365
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,2


COMMENTS

The complementary sequences a() and b() are uniquely determined by the titular equation and initial values. See A294381 for a guide to related sequences.


LINKS

Table of n, a(n) for n=0..12.
Clark Kimberling, Complementary equations, J. Int. Seq. 19 (2007), 113.


EXAMPLE

a(0) = 1, a(1) = 3, b(0) = 2, b(1) = 4, so that
a(2) = a(1)*b(0) + 1 = 7
Complement: (b(n)) = (2, 4, 5, 6, 8, 9, 10, 12, 13, 14, 15, 16, ...)


MATHEMATICA

mex := First[Complement[Range[1, Max[#1] + 1], #1]] &;
a[0] = 1; a[1] = 3; b[0] = 2; b[1] = 4;
a[n_] := a[n] = a[n  1]*b[n  2] + 1;
b[n_] := b[n] = mex[Flatten[Table[Join[{a[n]}, {a[i], b[i]}], {i, 0, n  1}]]];
Table[a[n], {n, 0, 40}] (* A294383 *)
Table[b[n], {n, 0, 10}]


CROSSREFS

Cf. A293076, A293765, A294381.
Sequence in context: A141477 A211371 A302157 * A082096 A119325 A048722
Adjacent sequences: A294380 A294381 A294382 * A294384 A294385 A294386


KEYWORD

nonn,more


AUTHOR

Clark Kimberling, Oct 29 2017


STATUS

approved



