login
A294329
a(n) = 8*((9*n + 8)*10^n - 8)/81.
3
0, 16, 256, 3456, 43456, 523456, 6123456, 70123456, 790123456, 8790123456, 96790123456, 1056790123456, 11456790123456, 123456790123456, 1323456790123456, 14123456790123456, 150123456790123456, 1590123456790123456, 16790123456790123456, 176790123456790123456
OFFSET
0,2
FORMULA
a(n) = (8/9) * A294327(n) = 8 * A294328(n).
From Colin Barker, Oct 28 2017: (Start)
G.f.: 16*x*(1 - 5*x) / ((1 - x)*(1 - 10*x)^2).
a(n) = 21*a(n-1) - 120*a(n-2) + 100*a(n-3) for n>2.
(End)
MATHEMATICA
LinearRecurrence[{21, -120, 100}, {0, 16, 256}, 20] (* Harvey P. Dale, Aug 19 2018 *)
PROG
(PARI) concat(0, Vec(16*x*(1 - 5*x) / ((1 - x)*(1 - 10*x)^2) + O(x^30))) \\ Colin Barker, Oct 28 2017
CROSSREFS
Sequence in context: A223565 A223677 A207277 * A267929 A122609 A206571
KEYWORD
nonn,easy
AUTHOR
Seiichi Manyama, Oct 28 2017
STATUS
approved