login
A294289
Square array A(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of e.g.f.: exp(Product_{j=1..n} 1/(1+x^j) - 1).
7
1, 1, 0, 1, -1, 0, 1, -1, 3, 0, 1, -1, 1, -13, 0, 1, -1, 1, -1, 73, 0, 1, -1, 1, -7, 25, -501, 0, 1, -1, 1, -7, 73, -241, 4051, 0, 1, -1, 1, -7, 49, -421, 1081, -37633, 0, 1, -1, 1, -7, 49, -181, 2641, -3361, 394353, 0, 1, -1, 1, -7, 49, -301, 1561, -32131, 68881
OFFSET
0,9
LINKS
FORMULA
B(j,k) is the coefficient of Product_{i=1..k} 1/(1+x^i).
A(0,k) = 1 and A(n,k) = (n-1)! * Sum_{j=1..n} j*B(j,k)*A(n-j,k)/(n-j)! for n > 0.
EXAMPLE
Square array A(n,k) begins:
1, 1, 1, 1, 1, ...
0, -1, -1, -1, -1, ...
0, 3, 1, 1, 1, ...
0, -13, -1, -7, -7, ...
0, 73, 25, 73, 49, ...
0, -501, -241, -421, -181, ...
CROSSREFS
Columns k=0..5 give A000007, A293125, A294290, A294291, A294292, A294293.
Rows n=0 gives A000012.
Main diagonal gives A294261.
Cf. A294212.
Sequence in context: A048838 A181872 A239264 * A059341 A249442 A334739
KEYWORD
sign,tabl
AUTHOR
Seiichi Manyama, Oct 27 2017
STATUS
approved