login
A294198
Labeled trees on n nodes with at least one node of degree two.
1
0, 0, 3, 12, 120, 1200, 16380, 255696, 4726008, 99107280, 2346042600, 61706210280, 1788467429892, 56618211155688, 1944581982268380, 72019509651227040, 2861473883255362800, 121414006972684901664, 5479661140682410928592, 262122044885503316203320
OFFSET
1,3
FORMULA
a(n) = (n-2)!*Sum_{q=1..n-2} C(n,q)*(-1)^(q+1)*(n-q)^(n-2-q)/(n-2-q)! where n >= 2.
EXAMPLE
When n=4 there are two types of trees: paths (24!/2 trees) or a star (4 trees) for a total of 4^(4-2) trees. Of these only the paths contain a vertex of degree 2 (2 in fact). When n=5 there are three types of trees: paths (5!/2 trees), a star (5 trees) or a fork (C(5,1) x C(4, 2) x 2) for a total of 5^(5-2) trees. Of these only the paths and the fork contain a vertex of degree 2.
MATHEMATICA
a[1] = 0; a[n_] := (n-2)! Sum[Binomial[n, q] (-1)^(q+1) (n-q)^(n-2-q) / (n-2-q)!, {q, 1, n-2}]; Array[a, 20] (* Jean-François Alcover, Feb 15 2018 *)
CROSSREFS
Sequence in context: A359658 A194506 A280458 * A133553 A010571 A280248
KEYWORD
nonn
AUTHOR
Marko Riedel, Feb 11 2018
STATUS
approved