login
A294183
Coefficients in expansion of E_6/E_8.
3
1, -984, 393768, -129252576, 38684099112, -10970838627984, 3003345011096352, -801909012374388672, 210169391033048138280, -54295810529811041175672, 13867098270790394508774768, -3508693915623201191415922848
OFFSET
0,2
LINKS
FORMULA
Convolution inverse of A288840.
a(n) ~ (-1)^n * 512 * Pi^12 * exp(Pi*sqrt(3)*n) * n / (3 * Gamma(1/3)^18). - Vaclav Kotesovec, Jun 03 2018
MATHEMATICA
terms = 12;
E6[x_] = 1 - 504*Sum[k^5*x^k/(1 - x^k), {k, 1, terms}];
E8[x_] = 1 + 480*Sum[k^7*x^k/(1 - x^k), {k, 1, terms}];
E6[x]/E8[x] + O[x]^terms // CoefficientList[#, x]& (* Jean-François Alcover, Feb 23 2018 *)
CROSSREFS
Cf. A008410 (E_8). A013973 (E_6), A287933, A288840.
E_k/E_{k+2}: A294181 (k=2), A294182 (k=4), this sequence (k=6).
Sequence in context: A249216 A289063 A289061 * A288840 A289417 A131640
KEYWORD
sign
AUTHOR
Seiichi Manyama, Feb 11 2018
STATUS
approved