login
Coefficients in expansion of E_2/E_4.
3

%I #21 Jun 03 2018 07:55:43

%S 1,-264,61128,-14107296,3255470952,-751247454384,173361309784992,

%T -40005651284526912,9231887649122522280,-2130392752758423726312,

%U 491619206548389935051568,-113448303808924351510423008,26179851123971817380111236128

%N Coefficients in expansion of E_2/E_4.

%H Seiichi Manyama, <a href="/A294181/b294181.txt">Table of n, a(n) for n = 0..422</a>

%F Convolution inverse of A288877.

%F a(n) ~ (-1)^n * 1024 * Pi^11 * exp(Pi*sqrt(3)*n) / (3^(3/2) * Gamma(1/3)^18). - _Vaclav Kotesovec_, Jun 03 2018

%t terms = 13;

%t E2[x_] = 1 - 24*Sum[k*x^k/(1 - x^k), {k, 1, terms}];

%t E4[x_] = 1 + 240*Sum[k^3*x^k/(1 - x^k), {k, 1, terms}];

%t E2[x]/E4[x] + O[x]^terms // CoefficientList[#, x]& (* _Jean-François Alcover_, Feb 23 2018 *)

%Y Cf. A001943, A004009 (E_4), A006352 (E_2), A288877.

%Y E_k/E_{k+2}: this sequence (k=2), A294182 (k=4), A294183 (k=6).

%K sign

%O 0,2

%A _Seiichi Manyama_, Feb 11 2018