This site is supported by donations to The OEIS Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A294179 a(n) is the smallest k with n prime factors such that p^k == p (mod k) for every prime p dividing k. 0
 2, 65, 561, 41041, 825265, 321197185 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS All the terms are squarefree. Are all composite terms odd? Conjecture: the sequence contains only finitely many Carmichael numbers, A006931. What is the smallest n >= 3 for which a(n) is not a Carmichael number? For n >= 3, a(n) <= A006931(n). Maybe a(7) < A006931(7). LINKS MAPLE for k from 2 to 10^6 do   if numtheory:-issqrfree(k) then     ps := numtheory:-factorset(k);     n := nops(ps);     if not assigned(A[n]) and andmap(p -> p &^ k -p mod k = 0, ps) then       A[n] := k;     end if   end if; end do: seq(A[i], i=1..max(map(op, [indices(A)]))); # Robert Israel, Feb 11 2018 MATHEMATICA With[{s = Select[Range[10^6], Function[k, AllTrue[FactorInteger[k][[All, 1]], PowerMod[#, k, k] == Mod[#, k] &]]]}, Select[Table[SelectFirst[s, PrimeOmega@ # == n &], {n, 5}], IntegerQ]] (* Michael De Vlieger, Feb 20 2018 *) CROSSREFS Cf. A006931, A285549, A294169. Sequence in context: A303376 A041511 A156651 * A002604 A294273 A199145 Adjacent sequences:  A294176 A294177 A294178 * A294180 A294181 A294182 KEYWORD nonn,more,hard AUTHOR Thomas Ordowski, Feb 11 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 20 12:41 EDT 2019. Contains 327237 sequences. (Running on oeis4.)