login
A294147
Initial member of 9 consecutive primes {a, b, c, d, e, f, g, h, i} such that (a + b + c)/3, (d + e + f)/3 and (g + h + i)/3 are all prime.
0
63487, 462067, 830777, 847507, 1012159, 1049773, 1250611, 1268747, 1372537, 1372559, 1589657, 1988237, 2567557, 2696569, 2874673, 2967317, 3676111, 3718657, 4196987, 4255067, 4550867, 4669333, 5217911, 5225147, 5716031, 6019553, 6103171, 6725657, 6725731, 7143557
OFFSET
1,1
EXAMPLE
63487 is a term because it is the initial term of 9 consecutive primes {63487, 63493, 63499, 63521, 63527, 63533, 63541, 63559, 63577} = {a, b, c, d, e, f, g, h, i}: the arithmetic mean of three sets, i.e., (a + b + c)/ 3, (d + e + f)/3 and (g + h + i)/3 is prime.
MATHEMATICA
Select[Partition[Prime@ Range[5*10^5], 9, 1], Function[{a, b, c, d, e, f, g, h, i}, AllTrue[{(a + b + c)/3, (d + e + f)/3, (g + h + i)/3}, PrimeQ]] @@ # &][[All, 1]] (* Michael De Vlieger, Oct 23 2017 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
K. D. Bajpai, Oct 23 2017
STATUS
approved