OFFSET
1,1
COMMENTS
Primes p such that the multiplicative order of 3/2 (mod p) is a power of 2.
LINKS
Arkadiusz Wesolowski, Table of n, a(n) for n = 1..48
Anders Björn and Hans Riesel, Factors of generalized Fermat numbers, Math. Comp. 67 (1998), no. 221, pp. 441-446.
Anders Björn and Hans Riesel, Table errata to “Factors of generalized Fermat numbers”, Math. Comp. 74 (2005), no. 252, p. 2099.
Anders Björn and Hans Riesel, Table errata 2 to "Factors of generalized Fermat numbers", Math. Comp. 80 (2011), pp. 1865-1866.
EXAMPLE
The first 5 such numbers are 5, 13, 97, 6817, 43112257, 1853024483819137. Their prime factorizations are (5), (13), (97), (17) (401), (14177) (3041), (1153) (1607133116929). - N. J. A. Sloane, Oct 29 2017
PROG
(PARI) print1(5, ", "); forprime(p=13, 342456532993, z=znorder(Mod(3/2, p)); if(2^ispower(z)==z, print1(p, ", ")));
CROSSREFS
KEYWORD
nonn
AUTHOR
Arkadiusz Wesolowski, Oct 23 2017
STATUS
approved