|
|
A294124
|
|
Numbers k such that (13*10^k + 179)/3 is prime.
|
|
0
|
|
|
1, 5, 8, 21, 37, 61, 62, 126, 188, 221, 253, 523, 654, 1875, 2372, 2394, 3073, 4158, 6663, 6881, 167911
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
For k>1, numbers such that the digit 4 followed by k-2 occurrences of the digit 3 followed by the digits 93 is prime (see Example section).
a(22) > 2*10^5.
|
|
LINKS
|
Table of n, a(n) for n=1..21.
Makoto Kamada, Factorization of near-repdigit-related numbers.
Makoto Kamada, Search for 43w93
|
|
EXAMPLE
|
5 is in this sequence because (13*10^5 + 179)/3 = 433393 is prime.
Initial terms and primes associated:
a(1) = 1, 103;
a(2) = 5, 433393;
a(3) = 8, 433333393;
a(4) = 21, 4333333333333333333393;
a(5) = 37, 43333333333333333333333333333333333393; etc.
|
|
MATHEMATICA
|
Select[Range[0, 100000], PrimeQ[(13*10^# + 179)/3] &] (* corrected by Georg Fischer, Jul 22 2019 *)
|
|
CROSSREFS
|
Cf. A056654, A268448, A269303, A270339, A270613, A270831, A270890, A270929, A271269.
Sequence in context: A138810 A331700 A105634 * A120036 A036381 A277369
Adjacent sequences: A294121 A294122 A294123 * A294125 A294126 A294127
|
|
KEYWORD
|
nonn,more,hard
|
|
AUTHOR
|
Robert Price, Oct 23 2017
|
|
EXTENSIONS
|
a(21) from Robert Price, Nov 17 2018
|
|
STATUS
|
approved
|
|
|
|