OFFSET
1,2
LINKS
Robert Israel, Table of n, a(n) for n = 1..238
FORMULA
a(n) = (5*n^2 - 7*n + 3)*a(n-1) - (n-1)^2*(9*n^2 - 24*n + 17)*a(n-2) + (n-2)^3*(n-1)^2*(7*n - 13)*a(n-3) - 2*(n-3)^3*(n-2)^3*(n-1)^2*a(n-4).
a(n) ~ (n!)^2 * 2^(n+2) / n^2.
MAPLE
f:= gfun:-rectoproc({a(n) = (5*n^2 - 7*n + 3)*a(n-1) - (n-1)^2*(9*n^2 - 24*n + 17)*a(n-2) + (n-2)^3*(n-1)^2*(7*n - 13)*a(n-3) - 2*(n-3)^3*(n-2)^3*(n-1)^2*a(n-4), a(1)=1, a(2)=9, a(3)=139, a(4)=3460}, a(n), remember):
map(f, [$1..20]); # Robert Israel, Oct 23 2017
MATHEMATICA
Table[n!^2*Sum[Binomial[n, k]/k^2, {k, 1, n}], {n, 1, 20}]
Table[n!^2*n*HypergeometricPFQ[{1, 1, 1, 1 - n}, {2, 2, 2}, -1], {n, 1, 20}]
PROG
(Magma) I:=[1, 9, 139, 3460]; [n le 4 select I[n] else (5*n^2- 7*n+3)*Self(n-1)-(n-1)^2*(9*n^2-24*n+17)*Self(n-2)+(n-2)^3*(n-1)^2*(7*n-13)*Self(n-3)-2*(n-3)^3*(n-2)^3*(n-1)^2*Self(n-4): n in [1..16]]; // Vincenzo Librandi, Oct 24 2017
CROSSREFS
KEYWORD
nonn
AUTHOR
Vaclav Kotesovec, Oct 23 2017
STATUS
approved