OFFSET
0,1
REFERENCES
Steven Vajda, Fibonacci and Lucas Numbers, and the Golden Section: Theory and Applications, Dover Publications (2008), page 24 (formula 8).
LINKS
Colin Barker, Table of n, a(n) for n = 0..1000
Tanya Khovanova, Recursive Sequences.
Index entries for linear recurrences with constant coefficients, signature (1,1).
FORMULA
G.f.: (2 + 19*x)/(1 - x - x^2).
a(n) = a(n-1) + a(n-2).
Let g(r,s;n) be the n-th generalized Fibonacci number with initial values r, s. We have:
a(n) = Lucas(n) + g(0,20;n), see A022354;
a(n) = Fibonacci(n) + g(2,20;n), see A022372;
a(n) = 2*g(1,21;n) - g(0,21;n);
a(n) = g(1,k;n) + g(1,21-k;n) for all k in Z.
a(h+k) = a(h)*Fibonacci(k-1) + a(h+1)*Fibonacci(k) for all h, k in Z (see S. Vajda in References section). For h=0 and k=n:
a(n) = 2*Fibonacci(n-1) + 21*Fibonacci(n).
Sum_{j=0..n} a(j) = a(n+2) - 21.
a(n) = (2^(-n)*((1-sqrt(5))^n*(-20+sqrt(5)) + (1+sqrt(5))^n*(20+sqrt(5)))) / sqrt(5). - Colin Barker, Oct 25 2017
MATHEMATICA
LinearRecurrence[{1, 1}, {2, 21}, 40]
PROG
(Magma) a0:=2; a1:=21; [GeneralizedFibonacciNumber(a0, a1, n): n in [0..40]];
(PARI) Vec((2 + 19*x)/(1 - x - x^2) + O(x^40)) \\ Colin Barker, Oct 25 2017
(Sage)
a = BinaryRecurrenceSequence(1, 1, 2, 21)
print([a(n) for n in range(38)]) # Peter Luschny, Oct 25 2017
CROSSREFS
Sequences of the type g(2,k;n): A118658 (k=0), A000032 (k=1), 2*A000045 (k=2,4), A020695 (k=3), A001060 (k=5), A022112 (k=6), A022113 (k=7), A294157 (k=8), A022114 (k=9), A022367 (k=10), A022115 (k=11), A022368 (k=12), A022116 (k=13), A022369 (k=14), A022117 (k=15), A022370 (k=16), A022118 (k=17), A022371 (k=18), A022119 (k=19), A022372 (k=20), this sequence (k=21), A022373 (k=22); A022374 (k=24); A022375 (k=26); A022376 (k=28), A190994 (k=29), A022377 (k=30); A022378 (k=32).
KEYWORD
nonn,easy
AUTHOR
Bruno Berselli, Oct 23 2017
STATUS
approved