OFFSET
1,6
EXAMPLE
a(14) = 3; the partitions of 14 into two parts are 13+1, 12+2, 11+3, 10+4, 9+5, 8+6, 7+7. There are three primes among the larger parts and four primes among the smaller parts, so min(3,4) = 3. - Wesley Ivan Hurt, Nov 18 2017
MATHEMATICA
Table[Min[Sum[PrimePi[i] - PrimePi[i - 1], {i, Floor[n/2]}], Sum[PrimePi[n - i] - PrimePi[n - i - 1], {i, Floor[n/2]}]], {n, 80}]
PROG
(PARI) a(n) = min(sum(i=1, n\2, isprime(i)), sum(i=1, n\2, isprime(n-i))); \\ Michel Marcus, Nov 19 2017
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Wesley Ivan Hurt, Oct 22 2017
STATUS
approved