login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A294068 Number of factorizations of n using perfect powers (elements of A001597) other than 1. 16
1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 2, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,16

LINKS

Robert Israel, Table of n, a(n) for n = 1..10000

EXAMPLE

The a(1152) = 7 factorizations are (4*4*8*9), (4*8*36), (4*9*32), (8*9*16), (8*144), (9*128), (32*36).

MAPLE

ispp:= proc(n) local F;

  F:= ifactors(n)[2];

  igcd(op(map(t -> t[2], F)))>1

end proc:

f:= proc(n) local F, np, Q;

  F:= map(t -> t[2], ifactors(n)[2]);

  np:= mul(ithprime(i)^F[i], i=1..nops(F));

  Q:= select(ispp, numtheory:-divisors(np));

  G(Q, np)

end proc:

G:= proc(Q, n) option remember; local q, t, k;

    if not numtheory:-factorset(n) subset `union`(seq(numtheory:-factorset(q), q=Q)) then return 0 fi;

    q:= Q[1]; t:= 0;

    for k from 0 while n mod q^k = 0 do

      t:= t + procname(Q[2..-1], n/q^k)

    od;

    t

end proc:

G({}, 1):= 1:

map(f, [$1..200]); # Robert Israel, May 06 2018

MATHEMATICA

ppQ[n_]:=And[n>1, GCD@@FactorInteger[n][[All, 2]]>1];

facsp[n_]:=If[n<=1, {{}}, Join@@Table[Map[Prepend[#, d]&, Select[facsp[n/d], Min@@#>=d&]], {d, Select[Divisors[n], ppQ]}]];

Table[Length[facsp[n]], {n, 100}]

CROSSREFS

Positions of zeros are A052485.

Cf. A000961, A001055, A001222, A001597, A001694, A007716, A007916, A045778, A052409, A052410, A052486, A091050, A203025, A303707, A303710.

Sequence in context: A259362 A303553 A188585 * A181011 A084863 A233441

Adjacent sequences:  A294065 A294066 A294067 * A294069 A294070 A294071

KEYWORD

nonn

AUTHOR

Gus Wiseman, May 05 2018

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 26 09:03 EDT 2020. Contains 338027 sequences. (Running on oeis4.)