%I #9 Nov 04 2017 08:52:25
%S 2,-4,8,-12,20,-44,52,-76,136,-164,252,-396,482,-684,990,-1272,1748,
%T -2388,3038,-4020,5358,-6796,8820,-11448,14334,-18304,23320,-28940,
%U 36444,-45708,56340,-70056,86698,-106056,130400,-159852,194166,-236452,287272,-346544,418746,-504800,604946,-725756,868892,-1035456,1234410,-1468436,1740602,-2063076,2440838,-2879056,3394228,-3995400,4690976
%N Row 3 in rectangular array A292929.
%H Paul D. Hanna, <a href="/A294066/b294066.txt">Table of n, a(n) for n = 0..380</a>
%e G.f.: A(q) = 2 - 4*q + 8*q^2 - 12*q^3 + 20*q^4 - 44*q^5 + 52*q^6 - 76*q^7 + 136*q^8 - 164*q^9 + 252*q^10 - 396*q^11 + 482*q^12 - 684*q^13 + 990*q^14 - 1272*q^15 + 1748*q^16 - 2388*q^17 + 3038*q^18 - 4020*q^19 + 5358*q^20 +...
%t nmax = 55; kmax = Ceiling[Sqrt[nmax]]+1;
%t Q[q_] := Sum[(x - q^k)^k, {k, -kmax, kmax}];
%t S[q_] := Sqrt[Q[q]/Q[-q]];
%t row[n_] := (1/q^n)*SeriesCoefficient[Sqrt[Q[q]/Q[-q]], {x, 0, n} ] + O[q]^nmax // CoefficientList[#, q]&;
%t row[3] (* _Jean-François Alcover_, Nov 04 2017 *)
%Y Cf. A292929, A293132, A294065, A294067.
%K sign
%O 0,1
%A _Paul D. Hanna_, Oct 23 2017