login
A294040
a(n) = e*(Gamma(2*n,1) - Gamma(n,1)).
2
0, 1, 14, 321, 13684, 986345, 108504786, 16926795529, 3554627458376, 966858672295089, 330665665961417590, 138879579704199815921, 70273067330329989586044, 42163840398198057552632281, 29599015959535037299068127994, 24034400959142450300350904324985
OFFSET
0,3
LINKS
FORMULA
a(n) = Sum_{k=0..2n-1} (2n-1)!/k! - Sum_{k=0..n-1} (n-1)!/k! = A000522(2*n-1) - A000522(n-1). - Robert Israel, Nov 14 2017
MAPLE
a := n -> exp(1)*(GAMMA(2*n, 1) - GAMMA(n, 1)):
seq(simplify(a(n)), n=0..15);
# Alternative:
A000522:= gfun:-rectoproc({(-x-2)*d(1+x)+(x+4)*d(x+2)-d(x+3), d(0) = 1, d(1) = 2, d(2) = 5}, d(x), remember):
0, seq(A000522(2*n-1)-A000522(n-1), n=1..30); # Robert Israel, Nov 14 2017
CROSSREFS
Sequence in context: A341501 A255857 A239782 * A035018 A264177 A275500
KEYWORD
nonn
AUTHOR
Peter Luschny, Nov 14 2017
STATUS
approved