OFFSET
0,3
COMMENTS
Essentially the first differences of A294020.
The sequence starts with 0, 1, 4, 4, 6. For n >= 5 the sequence has a periodic tail. More precisely, it has period 6: repeat [8, 4, 14, 24, 16, 22]. This tail is in accordance with the expansion of the two arms of the structure.
LINKS
Colin Barker, Table of n, a(n) for n = 0..1000
N. J. A. Sloane, Catalog of Toothpick and Cellular Automata Sequences in the OEIS
Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,0,1).
FORMULA
From Colin Barker, Nov 11 2017: (Start)
G.f.: x*(1 + 4*x + 4*x^2 + 6*x^3 + 8*x^4 + 4*x^5 + 13*x^6 + 20*x^7 + 12*x^8 + 16*x^9) / ((1 - x)*(1 + x)*(1 - x + x^2)*(1 + x + x^2)).
a(n) = a(n-6) for n > 10.
(End)
EXAMPLE
The sequence begins:
0, 1, 4, 4, 6;
The periodic tail begins:
8, 4, 14, 24, 16, 22;
8, 4, 14, 24, 16, 22;
8, 4, 14, 24, 16, 22,
8, 4, 14, 24, 16, 22;
8, 4, 14, 24, 16, 22;
...
PROG
(PARI) concat(0, Vec(x*(1 + 4*x + 4*x^2 + 6*x^3 + 8*x^4 + 4*x^5 + 13*x^6 + 20*x^7 + 12*x^8 + 16*x^9) / ((1 - x)*(1 + x)*(1 - x + x^2)*(1 + x + x^2)) + O(x^100))) \\ Colin Barker, Nov 11 2017
CROSSREFS
KEYWORD
nonn,tabf,easy
AUTHOR
Omar E. Pol, Oct 21 2017
STATUS
approved