OFFSET
0,5
LINKS
Seiichi Manyama, Antidiagonals n = 0..139, flattened
FORMULA
A(0,k) = 1 and A(n,k) = (n-1)! * Sum_{j=1..n} (j+k)*A(n-j,k)/(n-j)! for n > 0.
A(0,k) = 1, A(1,k) = k+1 and A(n,k) = (2*n-1+k)*A(n-1,k) - (n-1)*(n-2+k)*A(n-2,k) for n > 1.
EXAMPLE
Square array begins:
1, 1, 1, 1, 1, ... A000012;
1, 2, 3, 4, 5, ... A000027;
3, 7, 13, 21, 31, ... A002061;
13, 34, 73, 136, 229, ... A135859;
73, 209, 501, 1045, 1961, ...
501, 1546, 4051, 9276, 19081, ...
Antidiagonal rows begin as:
1;
1, 1;
1, 2, 3;
1, 3, 7, 13;
1, 4, 13, 34, 73;
1, 5, 21, 73, 209, 501; - G. C. Greubel, Mar 09 2021
MATHEMATICA
t[n_, k_]:= t[n, k]= If[n==0, 1, (n-1)!*Sum[(j+k)*t[n-j, k]/(n-j)!, {j, n}]];
T[n_, k_]:= t[k, n-k]; Table[T[n, k], {n, 0, 12}, {k, 0, n}]//Flatten (* G. C. Greubel, Mar 09 2021 *)
PROG
(Sage)
@CachedFunction
def t(n, k): return 1 if n==0 else factorial(n-1)*sum( (j+k)*t(n-j, k)/factorial(n-j) for j in (1..n) )
def T(n, k): return t(k, n-k)
flatten([[T(n, k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Mar 09 2021
(Magma)
function t(n, k)
if n eq 0 then return 1;
else return Factorial(n-1)*(&+[(j+k)*t(n-j, k)/Factorial(n-j): j in [1..n]]);
end if; return t;
end function;
[t(k, n-k): k in [0..n], n in [0..12]]; // G. C. Greubel, Mar 09 2021
CROSSREFS
Main diagonal gives A152059.
KEYWORD
nonn,tabl
AUTHOR
Seiichi Manyama, Oct 21 2017
STATUS
approved