login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A293943 Poincare series for invariant polynomial functions on the space of binary forms of degree 24. 13
1, 0, 1, 1, 5, 7, 29, 62, 201, 506, 1429, 3569, 9113, 21660, 50866, 114049, 250256, 530471, 1099354, 2215994, 4372347, 8429664, 15937900, 29540515, 53798630, 96288505, 169633646, 294284184, 503311347, 849051903, 1413975513, 2325798623, 3781205230, 6078784401, 9669020265, 15223385340 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,5

COMMENTS

Many of these Poincare series has every other term zero, in which case these zeros have been omitted.

LINKS

Table of n, a(n) for n=0..35.

Andries Brouwer, Poincaré Series (See n=24)

EXAMPLE

The Poincare series is (1 + 3t^4 + 5t^5 + 22t^6 + 50t^7 + 161t^8 + 410t^9 + 1140t^10 + 2808t^11 + 6991t^12 + 16199t^13 + 36859t^14 + 80010t^15 + 169421t^16 + 346121t^17 + 689947t^18 + 1336028t^19 + 2528528t^20 + 4670438t^21 + 8449357t^22 + 14968148t^23 + 26025211t^24 + 44423184t^25 + 74560924t^26 + 123110049t^27 + 200201862t^28 + 320813495t^29 + 507041603t^30 + 790779399t^31 + 1217881983t^32 + 1853082547t^33 + 2787305828t^34 + 4146285473t^35 + 6102914802t^36 + 8891714037t^37 + 12828922109t^38 + 18335849747t^39 + 25970411969t^40 + 36463444967t^41 + 50766544654t^42 + 70106566677t^43 + 96055848819t^44 + 130611273929t^45 + 176294077526t^46 + 236260806268t^47 + 314440780906t^48 + 415686796764t^49 + 545958588510t^50 + 712520954002t^51 + 924180944791t^52 + 1191539827621t^53 + 1527289937061t^54 + 1946524208144t^55 + 2467095245250t^56 + 3109981870291t^57 + 3899707778226t^58 + 4864758338084t^59 + 6038049238675t^60 + 7457378700401t^61 + 9165927715226t^62 + 11212723264911t^63 + 13653141566979t^64 + 16549347183387t^65 + 19970759966163t^66 + 23994424008053t^67 + 28705388495679t^68 + 34196950655128t^69 + 40570891843897t^70 + 47937531085658t^71 + 56415752168625t^72 + 66132800675574t^73 + 77224036793196t^74 + 89832410691882t^75 + 104107880721344t^76 + 120206510443320t^77 + 138289504277080t^78 + 158521885428959t^79 + 181071120920863t^80 + 206105363625597t^81 + 233791665949818t^82 + 264293800024765t^83 + 297770093432862t^84 + 334370877999768t^85 + 374236019258930t^86 + 417492084225375t^87 + 464249676150170t^88 + 514600451190458t^89 + 568614408301291t^90 + 626336920289549t^91 + 687786160642371t^92 + 752950342462258t^93 + 821785485884455t^94 + 894213074068083t^95 + 970118373456853t^96 + 1049348716366855t^97 + 1131712577949459t^98 + 1216978678300190t^99 + 1304875993404447t^100 + 1395093834298654t^101 + 1487282925178084t^102 + 1581056564322066t^103 + 1675992841680187t^104 + 1771636919407880t^105 + 1867504387728908t^106 + 1963084625347838t^107 + 2057845212109979t^108 + 2151236247650709t^109 + 2242695657576844t^110 + 2331654270014146t^111 + 2417541776323760t^112 + 2499792295577520t^113 + 2577850688959356t^114 + 2651178288955232t^115 + 2719259223507973t^116 + 2781605956195677t^117 + 2837765257346956t^118 + 2887323196198862t^119 + 2929910405074852t^120 + 2965206186731099t^121 + 2992942753356401t^122 + 3012908161933130t^123 + 3024949270785865t^124 + 3028973288002032t^125 + 3024949270785865t^126 + 3012908161933130t^127 + 2992942753356401t^128 + 2965206186731099t^129 + 2929910405074852t^130 + 2887323196198862t^131 + 2837765257346956t^132 + 2781605956195677t^133 + 2719259223507973t^134 + 2651178288955232t^135 + 2577850688959356t^136 + 2499792295577520t^137 + 2417541776323760t^138 + 2331654270014146t^139 + 2242695657576844t^140 + 2151236247650709t^141 + 2057845212109979t^142 + 1963084625347838t^143 + 1867504387728908t^144 + 1771636919407880t^145 + 1675992841680187t^146 + 1581056564322066t^147 + 1487282925178084t^148 + 1395093834298654t^149 + 1304875993404447t^150 + 1216978678300190t^151 + 1131712577949459t^152 + 1049348716366855t^153 + 970118373456853t^154 + 894213074068083t^155 + 821785485884455t^156 + 752950342462258t^157 + 687786160642371t^158 + 626336920289549t^159 + 568614408301291t^160 + 514600451190458t^161 + 464249676150170t^162 + 417492084225375t^163 + 374236019258930t^164 + 334370877999768t^165 + 297770093432862t^166 + 264293800024765t^167 + 233791665949818t^168 + 206105363625597t^169 + 181071120920863t^170 + 158521885428959t^171 + 138289504277080t^172 + 120206510443320t^173 + 104107880721344t^174 + 89832410691882t^175 + 77224036793196t^176 + 66132800675574t^177 + 56415752168625t^178 + 47937531085658t^179 + 40570891843897t^180 + 34196950655128t^181 + 28705388495679t^182 + 23994424008053t^183 + 19970759966163t^184 + 16549347183387t^185 + 13653141566979t^186 + 11212723264911t^187 + 9165927715226t^188 + 7457378700401t^189 + 6038049238675t^190 + 4864758338084t^191 + 3899707778226t^192 + 3109981870291t^193 + 2467095245250t^194 + 1946524208144t^195 + 1527289937061t^196 + 1191539827621t^197 + 924180944791t^198 + 712520954002t^199 + 545958588510t^200 + 415686796764t^201 + 314440780906t^202 + 236260806268t^203 + 176294077526t^204 + 130611273929t^205 + 96055848819t^206 + 70106566677t^207 + 50766544654t^208 + 36463444967t^209 + 25970411969t^210 + 18335849747t^211 + 12828922109t^212 + 8891714037t^213 + 6102914802t^214 + 4146285473t^215 + 2787305828t^216 + 1853082547t^217 + 1217881983t^218 + 790779399t^219 + 507041603t^220 + 320813495t^221 + 200201862t^222 + 123110049t^223 + 74560924t^224 + 44423184t^225 + 26025211t^226 + 14968148t^227 + 8449357t^228 + 4670438t^229 + 2528528t^230 + 1336028t^231 + 689947t^232 + 346121t^233 + 169421t^234 + 80010t^235 + 36859t^236 + 16199t^237 + 6991t^238 + 2808t^239 + 1140t^240 + 410t^241 + 161t^242 + 50t^243 + 22t^244 + 5t^245 + 3t^246 + t^250) / (1 - t^2)(1 - t^3)(1 - t^4) (1 - t^5)(1 - t^6)(1 - t^7)(1 - t^8)(1 - t^9)(1 - t^10)(1 - t^11) (1 - t^12)(1 - t^13)(1 - t^14)(1 - t^15)(1 - t^16)(1 - t^17) (1 - t^18)(1 - t^19)(1 - t^20)(1 - t^21)(1 - t^22)(1 - t^23)

CROSSREFS

For these Poincare series for d = 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 20, 24 see A097852, A293933, A097851, A293934, A293935, A293936, A293937, A293938, A293939, A293940, A293941, A293942, A293943 respectively.

Sequence in context: A153121 A280926 A070153 * A171619 A153411 A081630

Adjacent sequences:  A293940 A293941 A293942 * A293944 A293945 A293946

KEYWORD

nonn

AUTHOR

N. J. A. Sloane, Oct 20 2017

EXTENSIONS

More terms from R. J. Mathar, Oct 26 2017

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 20 13:19 EST 2019. Contains 329336 sequences. (Running on oeis4.)