login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A293942 Poincare series for invariant polynomial functions on the space of binary forms of degree 20. 13
1, 0, 1, 1, 4, 5, 20, 35, 102, 217, 540, 1160, 2634, 5467, 11463, 22786, 44848, 85068, 159018, 288914, 516643, 903256, 1554696, 2626217, 4372347, 7163317, 11580760, 18462388, 29078307, 45236642, 69602057, 105917976, 159571937, 238035458, 351841043, 515413775, 748727920 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,5

COMMENTS

Many of these Poincare series has every other term zero, in which case these zeros have been omitted.

LINKS

Table of n, a(n) for n=0..36.

Andries Brouwer, Poincaré Series (See n=20)

EXAMPLE

The Poincare series is (1 + 2t^4 + 3t^5 + 14t^6 + 26t^7 + 74t^8 + 159t^9 + 386t^10 + 813t^11 + 1786t^12 + 3581t^13 + 7194t^14 + 13690t^15 + 25662t^16 + 46264t^17 + 81972t^18 + 140858t^19 + 237716t^20 + 391489t^21 + 633566t^22 + 1004435t^23 + 1567003t^24 + 2401414t^25 + 3626076t^26 + 5390337t^27 + 7904749t^28 + 11431403t^29 + 16326733t^30 + 23026390t^31 + 32104634t^32 + 44251748t^33 + 60350746t^34 + 81444897t^35 + 108834679t^36 + 144027146t^37 + 188856601t^38 + 245409166t^39 + 316164054t^40 + 403886629t^41 + 511790842t^42 + 643385302t^43 + 802659024t^44 + 993869808t^45 + 1221746711t^46 + 1491212905t^47 + 1807606172t^48 + 2176318945t^49 + 2603044019t^50 + 3093325449t^51 + 3652826842t^52 + 4286795701t^53 + 5000365547t^54 + 5797926021t^55 + 6683480280t^56 + 7659930019t^57 + 8729496251t^58 + 9892940351t^59 + 11150071817t^60 + 12498910419t^61 + 13936313872t^62 + 15457101887t^63 + 17054812157t^64 + 18720815924t^65 + 20445221332t^66 + 22215981071t^67 + 24019965060t^68 + 25842070888t^69 + 27666450024t^70 + 29475635493t^71 + 31251911254t^72 + 32976432897t^73 + 34630731555t^74 + 36195812801t^75 + 37653744237t^76 + 38986726195t^77 + 40178723548t^78 + 41214465019t^79 + 42081091938t^80 + 42767062988t^81 + 43263759348t^82 + 43564293507t^83 + 43665034627t^84 + 43564293507t^85 + 43263759348t^86 + 42767062988t^87 + 42081091938t^88 + 41214465019t^89 + 40178723548t^90 + 38986726195t^91 + 37653744237t^92 + 36195812801t^93 + 34630731555t^94 + 32976432897t^95 + 31251911254t^96 + 29475635493t^97 + 27666450024t^98 + 25842070888t^99 + 24019965060t^100 + 22215981071t^101 + 20445221332t^102 + 18720815924t^103 + 17054812157t^104 + 15457101887t^105 + 13936313872t^106 + 12498910419t^107 + 11150071817t^108 + 9892940351t^109 + 8729496251t^110 + 7659930019t^111 + 6683480280t^112 + 5797926021t^113 + 5000365547t^114 + 4286795701t^115 + 3652826842t^116 + 3093325449t^117 + 2603044019t^118 + 2176318945t^119 + 1807606172t^120 + 1491212905t^121 + 1221746711t^122 + 993869808t^123 + 802659024t^124 + 643385302t^125 + 511790842t^126 + 403886629t^127 + 316164054t^128 + 245409166t^129 + 188856601t^130 + 144027146t^131 + 108834679t^132 + 81444897t^133 + 60350746t^134 + 44251748t^135 + 32104634t^136 + 23026390t^137 + 16326733t^138 + 11431403t^139 + 7904749t^140 + 5390337t^141 + 3626076t^142 + 2401414t^143 + 1567003t^144 + 1004435t^145 + 633566t^146 + 391489t^147 + 237716t^148 + 140858t^149 + 81972t^150 + 46264t^151 + 25662t^152 + 13690t^153 + 7194t^154 + 3581t^155 + 1786t^156 + 813t^157 + 386t^158 + 159t^159 + 74t^160 + 26t^161 + 14t^162 + 3t^163 + 2t^164 + t^168) / (1 - t^2)(1 - t^3)(1 - t^4)(1 - t^5) (1 - t^6)(1 - t^7)(1 - t^8)(1 - t^9)(1 - t^10)(1 - t^11)(1 - t^12) (1 - t^13)(1 - t^14)(1 - t^15)(1 - t^16)(1 - t^17)(1 - t^18) (1 - t^19)

MAPLE

nmax := 120 :

(1 + 2*t^4 + 3*t^5 + 14*t^6 + 26*t^7 + 74*t^8 + 159*t^9 + 386*t^10 + 813*t^11 + 1786*t^12 + 3581*t^13 + 7194*t^14 + 13690*t^15 + 25662*t^16 + 46264*t^17 + 81972*t^18 + 140858*t^19 + 237716*t^20 + 391489*t^21 + 633566*t^22 + 1004435*t^23 + 1567003*t^24 + 2401414*t^25 + 3626076*t^26 + 5390337*t^27 + 7904749*t^28 + 11431403*t^29 + 16326733*t^30 + 23026390*t^31 + 32104634*t^32 + 44251748*t^33 + 60350746*t^34 + 81444897*t^35 + 108834679*t^36 + 144027146*t^37 + 188856601*t^38 + 245409166*t^39 + 316164054*t^40 + 403886629*t^41 + 511790842*t^42 + 643385302*t^43 + 802659024*t^44 + 993869808*t^45 + 1221746711*t^46 + 1491212905*t^47 + 1807606172*t^48 + 2176318945*t^49 + 2603044019*t^50 + 3093325449*t^51 + 3652826842*t^52 + 4286795701*t^53 + 5000365547*t^54 + 5797926021*t^55 + 6683480280*t^56 + 7659930019*t^57 + 8729496251*t^58 + 9892940351*t^59 + 11150071817*t^60 + 12498910419*t^61 + 13936313872*t^62 + 15457101887*t^63 + 17054812157*t^64 + 18720815924*t^65 + 20445221332*t^66 + 22215981071*t^67 + 24019965060*t^68 + 25842070888*t^69 + 27666450024*t^70 + 29475635493*t^71 + 31251911254*t^72 + 32976432897*t^73 + 34630731555*t^74 + 36195812801*t^75 + 37653744237*t^76 + 38986726195*t^77 + 40178723548*t^78 + 41214465019*t^79 + 42081091938*t^80 + 42767062988*t^81 + 43263759348*t^82 + 43564293507*t^83 + 43665034627*t^84 + 43564293507*t^85 + 43263759348*t^86 + 42767062988*t^87 + 42081091938*t^88 + 41214465019*t^89 + 40178723548*t^90 + 38986726195*t^91 + 37653744237*t^92 + 36195812801*t^93 + 34630731555*t^94 + 32976432897*t^95 + 31251911254*t^96 + 29475635493*t^97 + 27666450024*t^98 + 25842070888*t^99 + 24019965060*t^100 + 22215981071*t^101 + 20445221332*t^102 + 18720815924*t^103 + 17054812157*t^104 + 15457101887*t^105 + 13936313872*t^106 + 12498910419*t^107 + 11150071817*t^108 + 9892940351*t^109 + 8729496251*t^110 + 7659930019*t^111 + 6683480280*t^112 + 5797926021*t^113 + 5000365547*t^114 + 4286795701*t^115 + 3652826842*t^116 + 3093325449*t^117 + 2603044019*t^118 + 2176318945*t^119 + 1807606172*t^120 + 1491212905*t^121 + 1221746711*t^122 + 993869808*t^123 + 802659024*t^124 + 643385302*t^125 + 511790842*t^126 + 403886629*t^127 + 316164054*t^128 + 245409166*t^129 + 188856601*t^130 + 144027146*t^131 + 108834679*t^132 + 81444897*t^133 + 60350746*t^134 + 44251748*t^135 + 32104634*t^136 + 23026390*t^137 + 16326733*t^138 + 11431403*t^139 + 7904749*t^140 + 5390337*t^141 + 3626076*t^142 + 2401414*t^143 + 1567003*t^144 + 1004435*t^145 + 633566*t^146 + 391489*t^147 + 237716*t^148 + 140858*t^149 + 81972*t^150 + 46264*t^151 + 25662*t^152 + 13690*t^153 + 7194*t^154 + 3581*t^155 + 1786*t^156 + 813*t^157 + 386*t^158 + 159*t^159 + 74*t^160 + 26*t^161 + 14*t^162 + 3*t^163 + 2*t^164 + t^168) / (1 - t^2)/(1 - t^3)/(1 - t^4)/(1 - t^5) /(1 - t^6)/(1 - t^7)/(1 - t^8)/(1 - t^9)/(1 - t^10)/(1 - t^11)/(1 - t^12) /(1 - t^13)/(1 - t^14)/(1 - t^15)/(1 - t^16)/(1 - t^17)/(1 - t^18) /(1 - t^19) ;

taylor(%, t=0, nmax) ;

gfun[seriestolist](%) ; # R. J. Mathar, Oct 26 2017

CROSSREFS

For these Poincare series for d = 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 20, 24 see A097852, A293933, A097851, A293934, A293935, A293936, A293937, A293938, A293939, A293940, A293941, A293942, A293943 respectively.

Sequence in context: A240860 A059182 A027958 * A064670 A119283 A151499

Adjacent sequences:  A293939 A293940 A293941 * A293943 A293944 A293945

KEYWORD

nonn

AUTHOR

N. J. A. Sloane, Oct 20 2017

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 22 03:20 EST 2019. Contains 329383 sequences. (Running on oeis4.)