login
A293901
Sum of proper divisors of n of the form 4k+1.
4
0, 1, 1, 1, 1, 1, 1, 1, 1, 6, 1, 1, 1, 1, 6, 1, 1, 10, 1, 6, 1, 1, 1, 1, 6, 14, 10, 1, 1, 6, 1, 1, 1, 18, 6, 10, 1, 1, 14, 6, 1, 22, 1, 1, 15, 1, 1, 1, 1, 31, 18, 14, 1, 10, 6, 1, 1, 30, 1, 6, 1, 1, 31, 1, 19, 34, 1, 18, 1, 6, 1, 10, 1, 38, 31, 1, 1, 14, 1, 6, 10, 42, 1, 22, 23, 1, 30, 1, 1, 60, 14, 1, 1, 1, 6, 1, 1, 50, 43, 31, 1, 18, 1, 14, 27
OFFSET
1,10
FORMULA
a(n) = Sum_{d|n, d<n} [1 == d mod 4]*d.
a(n) = A091570(n) - A293903(n).
G.f.: Sum_{k>=1} (4*k-3) * x^(8*k-6) / (1 - x^(4*k-3)). - Ilya Gutkovskiy, Apr 14 2021
Sum_{k=1..n} a(k) = c * n^2 + O(n*log(n)), where c = Pi^2/48 - 1/8 = 0.0806167... . - Amiram Eldar, Nov 27 2023
MATHEMATICA
a[n_] := DivisorSum[n, # &, # < n && Mod[#, 4] == 1 &]; Array[a, 100] (* Amiram Eldar, Nov 27 2023 *)
PROG
(PARI) A293901(n) = sumdiv(n, d, (d<n)*(1==(d%4))*d);
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Antti Karttunen, Oct 19 2017
STATUS
approved