OFFSET
0,3
COMMENTS
From Peter Bala, Mar 28 2022: (Start)
The congruence a(n+k) == a(n) (mod k) holds for all n and k.
It follows that the sequence obtained by taking a(n) modulo a fixed positive integer k is periodic with exact period dividing k. For example, the sequence taken modulo 10 becomes [1, 1, 5, 9, 9, 1, 1, 5, 9, 9, ...], a purely periodic sequence with exact period 5.
5 divides a(5*n+2), 7 divides a(7*n+3); 17 divides a(17*n+7), a(17*n+8) and a(17*n+11). (End)
LINKS
Seiichi Manyama, Table of n, a(n) for n = 0..418
FORMULA
a(0) = 1 and a(n) = (n-1)! * Sum_{k=1..n} k^2*A000009(k)*a(n-k)/(n-k)! for n > 0.
MATHEMATICA
nmax = 20; CoefficientList[Series[E^Sum[k*PartitionsQ[k]*x^k, {k, 1, nmax}], {x, 0, nmax}], x] * Range[0, nmax]! (* Vaclav Kotesovec, Oct 18 2017 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Oct 17 2017
STATUS
approved