|
|
A293831
|
|
Numbers k such that (d(k), d(k+1)) = (1,1) in the base-2 digits d(i) of Pi.
|
|
4
|
|
|
1, 13, 14, 15, 16, 17, 20, 42, 49, 59, 65, 73, 78, 82, 95, 96, 105, 108, 109, 116, 117, 121, 149, 150, 170, 174, 175, 176, 177, 181, 186, 187, 207, 208, 211, 212, 213, 214, 222, 227, 228, 231, 239, 240, 244, 247, 282, 283, 284, 288, 293, 294, 299, 313, 316
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
This sequence, together with A293828, A293829, and A293830, partitions the positive integers.
|
|
LINKS
|
Clark Kimberling, Table of n, a(n) for n = 1..10000
|
|
EXAMPLE
|
(d(i)) = (1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0,...) = A004601, in which (1,1) first occurs as (a(1),a(2)).
|
|
MATHEMATICA
|
z = 100; s = StringJoin[Map[ToString, First[RealDigits[N[Pi], 10000], 2]]]];
Take[Map[#[[1]]&, StringPosition[s, "00"]], z] (*A293828*)
Take[Map[#[[1]]&, StringPosition[s, "01"]], z] (*A293829*)
Take[Map[#[[1]]&, StringPosition[s, "10"]], z] (*A293830*)
Take[Map[#[[1]]&, StringPosition[s, "11"]], z] (*A293831*)
(* Peter J. C. Moses, Oct 15 2017 *)
|
|
CROSSREFS
|
Cf. A004601, A293828, A293829, A293830.
Sequence in context: A178402 A132580 A138596 * A118140 A108854 A106007
Adjacent sequences: A293828 A293829 A293830 * A293832 A293833 A293834
|
|
KEYWORD
|
nonn,easy,base
|
|
AUTHOR
|
Clark Kimberling, Oct 20 2017
|
|
STATUS
|
approved
|
|
|
|