

A293822


Number of integersided pentagons having perimeter n, modulo rotations but not reflections.


5



1, 1, 3, 6, 13, 21, 37, 51, 84, 108, 166, 203, 294, 350, 486, 566, 759, 867, 1133, 1276, 1631, 1815, 2275, 2509, 3094, 3386, 4116, 4473, 5372, 5804, 6896, 7412, 8721, 9333, 10887, 11606, 13433, 14269, 16401, 17367, 19836, 20944, 23782, 25047, 28290, 29726, 33410, 35030, 39195, 41015
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

5,3


COMMENTS

Rotations are counted only once, but reflections are considered different. For a polygon to be nondegenerate, the longest side must be shorter than the sum of the remaining sides (equivalently, shorter than n/2).
A formula is given in Section 6 of the East and Niles article.


LINKS

Table of n, a(n) for n=5..54.
James East, Ron Niles, Integer polygons of given perimeter, arXiv:1710.11245 [math.CO], 2017.


FORMULA

G.f.: x^5*(1 + x  x^2 + 2*x^3 + 7*x^4 + 2*x^5  2*x^6 + x^8) / ((1  x)^5*(1 + x)^4*(1 + x + x^2 + x^3 + x^4)) (conjectured).  Colin Barker, Nov 01 2017


EXAMPLE

For example, there are 6 rotationclasses of perimeter8 pentagons: 32111, 31211, 31121, 31112, 22211, 22121. Note that 32111 and 31112 are reflections of each other, but these are not rotationally equivalent.


MATHEMATICA

T[n_, k_] := DivisorSum[GCD[n, k], EulerPhi[#]*Binomial[n/#, k/#] &]/n  Binomial[Floor[n/2], k  1];
a[n_] := T[n, 5];
Table[a[n], {n, 5, 60}] (* JeanFrançois Alcover, Jun 14 2018, after Andrew Howroyd and A293819 *)


CROSSREFS

Column k=5 of A293819.
Cf. A293820 (polygons), A293821 (quadrilaterals), A293823 (hexagons).
Sequence in context: A064290 A064621 A194279 * A180750 A047172 A034734
Adjacent sequences: A293819 A293820 A293821 * A293823 A293824 A293825


KEYWORD

nonn


AUTHOR

James East, Oct 16 2017


STATUS

approved



