login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A293766 Solution of the complementary equation a(n) = a(n-1) + a(n-2) + b(n-1) + 3, where a(0) = 1, a(1) = 3, b(0) = 2, b(1) = 4. 2
1, 3, 11, 22, 42, 74, 127, 213, 353, 581, 950, 1548, 2516, 4083, 6619, 10723, 17364, 28110, 45498, 73634, 119159, 192821, 312009, 504860, 816900, 1321792, 2138725, 3460551, 5599311, 9059898, 14659246, 23719182, 38378467, 62097689, 100476197, 162573928 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

The complementary sequences a() and b() are uniquely determined by the titular equation and initial values. The initial values of each sequence in the following guide are a(0) = 1, a(2) = 3, b(0) = 2, b(1) = 4:

Conjecture: a(n)/a(n-1) -> (1 + sqrt(5))/2, the golden ratio.  See A293358 for a guide to related sequences.

LINKS

Table of n, a(n) for n=0..35.

Clark Kimberling, Complementary equations, J. Int. Seq. 19 (2007), 1-13.

EXAMPLE

a(0) = 1, a(1) = 3, b(0) = 2, b(1) = 4, so that

a(2) = a(1) + a(0) + b(1) + 3 = 11;

Complement: (b(n)) = (2, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, ...)

MATHEMATICA

mex := First[Complement[Range[1, Max[#1] + 1], #1]] &;

a[0] = 1; a[1] = 3; b[0] = 2; b[1] = 4;

a[n_] := a[n] = a[n - 1] + a[n - 2] + b[n - 1] + 3;

b[n_] := b[n] = mex[Flatten[Table[Join[{a[n]}, {a[i], b[i]}], {i, 0, n - 1}]]];

Table[a[n], {n, 0, 40}]  (* A293766 *)

Table[b[n], {n, 0, 10}]

CROSSREFS

Cf. A001622 (golden ratio), A293765.

Sequence in context: A129215 A139593 A121471 * A178946 A087078 A177789

Adjacent sequences:  A293763 A293764 A293765 * A293767 A293768 A293769

KEYWORD

nonn,easy

AUTHOR

Clark Kimberling, Oct 29 2017

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 15 08:55 EST 2019. Contains 329144 sequences. (Running on oeis4.)