login
A293708
Numbers n such that phi(sigma(n))/n > phi(sigma(m))/m for all m < n, where sigma is the sum of divisors function (A000203) and phi is Euler's totient function (A000010).
0
1, 4, 16, 36, 144, 576, 3600, 14400, 32400, 129600, 291600, 1166400, 8643600, 34574400, 77792400, 84272400, 311169600, 337089600, 700131600, 2800526400, 179233689600, 202338032400, 809352129600
OFFSET
1,2
COMMENTS
Makowski and Schinzel proved that lim sup phi(sigma(n))/n = oo, thus this sequence is infinite.
LINKS
Andrzej Makowski and Andrzej Schinzel, On the functions phi(n) and sigma(n), Colloquium Mathematicae, Vol. 13, No. 1 (1964), pp. 95-99.
MATHEMATICA
a={}; rm=0; Do[r = EulerPhi[DivisorSigma[1, n]]/n; If[r>rm, rm=r; AppendTo[a, n]], {n, 1, 100000}]; a
PROG
(PARI) lista(nn) = {my(rmax = 0); for (n=1, nn, if ((r=eulerphi(sigma(n))/n) > rmax, rmax = r; print1(n, ", ")); ); } \\ Michel Marcus, Oct 18 2017
CROSSREFS
KEYWORD
nonn,more
AUTHOR
Amiram Eldar, Oct 15 2017
EXTENSIONS
a(21)-a(23) from Robert G. Wilson v, Oct 16 2017
STATUS
approved