OFFSET
1,2
COMMENTS
Zero can be a leading digit.
The sequence is the 8-digit analog to A263194.
This sequence contains 5050 terms. - David A. Corneth, Oct 14 2017
LINKS
David A. Corneth, Table of n, a(n) for n = 1..5050 (full sequence; first 1045 terms from Vincenzo Librandi)
EXAMPLE
131299 is a term because 0013 + 1299 = 1312 and 1312 is the string of the middle four digits of 00131299.
MATHEMATICA
dn8Q[n_]:=Module[{d=PadLeft[IntegerDigits[n], 8, 0]}, FromDigits[ d[[1;; 4]]]+ FromDigits[ d[[5;; 8]]]==FromDigits[d[[3;; 6]]]]; Select[Range[ 0, 10^6], dn8Q]
PROG
(Magma) [n: n in [0..2*10^5] | (n div 10000+n) mod 10000 eq (n div 100) mod 10000]; // Vincenzo Librandi, Oct 15 2017
(PARI) is(n) = n < 10^8 && n\10000 + n%10000 == (n \ 100) % 10000 \\ David A. Corneth, Oct 14 2017
(PARI) seq() = {my(t = 0, res = List(), c1, c2); while(t < 10^8, listput(res, t); c2 = (t\10000)%100; if(c2 < 99, t+= 10100, c1 = t\10^6; t = (c1+1)*10^6 + (c1 + 2)*10^4 + 98 - c1)); for(i=2, #res, if(res[i] > 10^6, listsort(res); return(res)); listput(res, res[i]-1))} \\ (this program produces the full sequence) David A. Corneth, Oct 16 2017
CROSSREFS
KEYWORD
nonn,base,easy,fini,full
AUTHOR
Harvey P. Dale, Oct 14 2017
STATUS
approved