login
A293638
a(n) is the integer k that minimizes |k/Fibonacci(n) - 1/5|.
2
0, 0, 0, 0, 1, 1, 2, 3, 4, 7, 11, 18, 29, 47, 75, 122, 197, 319, 517, 836, 1353, 2189, 3542, 5731, 9274, 15005, 24279, 39284, 63562, 102846, 166408, 269254, 435662, 704916, 1140577, 1845493, 2986070, 4831563, 7817634, 12649197, 20466831, 33116028, 53582859
OFFSET
0,7
LINKS
Index entries for linear recurrences with constant coefficients, signature (1, 2, -1, -2, 1, 2, -1, -2, 1, 1)
FORMULA
G.f.: ((-1 + x) x^4 (1 + x))/((-1 + x + x^2) (1 - x^2 + x^4 - x^6 + x^8)).
a(n) = a(n-1) + 2 a(n-2) - a(n-3) - 2 a(n-4) + a(n-5) + 2 a(n-6) - a(n-7) - 2 a(n-8) + a(n-9) + a(n-10) for n >= 11.
a(n) = floor(1/2 + F(n)/5).
a(n) = A004698(n) if (fractional part of Fibonacci(n)/5) < 1/2, otherwise a(n) = A293637(n).
MATHEMATICA
z = 120; r = 1/5; f[n_] := Fibonacci[n];
Table[Floor[r*f[n]], {n, 0, z}]; (* A004698 *)
Table[Ceiling[r*f[n]], {n, 0, z}]; (* A293637 *)
Table[Round[r*f[n]], {n, 0, z}]; (* A293638 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Oct 14 2017
STATUS
approved