This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A293626 Numbers of the form (2^(2p) + 1)/5, where p is a prime > 5. 0
 3277, 838861, 13421773, 3435973837, 54975581389, 14073748835533, 57646075230342349, 922337203685477581, 3777893186295716170957, 967140655691703339764941, 15474250491067253436239053, 3961408125713216879677197517, 16225927682921336339157801028813 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Rotkiewicz proved that all the terms in this sequence are Fermat pseudoprimes to base 2 (A001567). LINKS Andrzej Rotkiewicz, Sur les formules donnant des nombres pseudopremiers, Colloquium Mathematicae, Vol. 12, No. 1 (1964), pp. 69-72. EXAMPLE 3277 = (2^(2*7) + 1)/5 is the first term, corresponding to the prime p = 7. MATHEMATICA p = Select[Range[7, 60], PrimeQ]; (2^(2p) + 1)/5 CROSSREFS Cf. A001567, A210454. Sequence in context: A245482 A244626 A270204 * A152506 A015326 A252074 Adjacent sequences:  A293623 A293624 A293625 * A293627 A293628 A293629 KEYWORD nonn AUTHOR Amiram Eldar, Oct 13 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 26 05:22 EDT 2019. Contains 323579 sequences. (Running on oeis4.)