

A293621


Numbers n such that (2n)^2 + 1 and (2n+2)^2 + 1 are both primes.


0



1, 2, 7, 12, 27, 62, 102, 192, 232, 317, 322, 357, 547, 572, 587, 622, 637, 657, 687, 782, 807, 837, 842, 982, 1027, 1042, 1047, 1202, 1227, 1267, 1332, 1417, 1462, 1567, 1652, 1767, 1877, 1887, 2012, 2077, 2087, 2182, 2302, 2307, 2367, 2392, 2397, 2477, 2507
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


COMMENTS

Sierpiński proved that under Schinzel's hypothesis H this sequence is infinite. He gives the 24 terms below 10^3.
Sierpiński noted that the only triple of consecutive primes of the form (2n)^2 + 1 are for n = 1 (i.e., 1 and 2 are the only consecutive terms in this sequence), since every triple of consecutive terms contains at least one term which is divisible by 5.
Subsequence of A001912.


LINKS

Table of n, a(n) for n=1..49.
Wacław Sierpiński, Remarque sur la distribution de nombres premiers, Matematički Vesnik, Vol. 2(17), Issue 31 (1965), pp. 7778.
Eric W. Weisstein, NearSquare Prime.
Wikipedia, Schinzel's hypothesis H.


EXAMPLE

1 is in the sequence since (2*1)^2 + 1 = 5 and (2*1+2)^2 + 1 = 17 are both primes.


MATHEMATICA

Select[Range[10^4], AllTrue[{(2#)^2+1, (2#+2)^2+1}, PrimeQ] &]


PROG

(PARI) isok(n) = isprime((2*n)^2 + 1) && isprime((2*n+2)^2 + 1); \\ Michel Marcus, Oct 13 2017


CROSSREFS

Cf. A001912, A002496, A002522, A005574, A053755.
Sequence in context: A242201 A177747 A288888 * A175879 A102371 A007230
Adjacent sequences: A293618 A293619 A293620 * A293622 A293623 A293624


KEYWORD

nonn


AUTHOR

Amiram Eldar, Oct 13 2017


STATUS

approved



