login
A293620
Numbers k such that f(k), f(k+1) and f(k+2) are all primes, where f(k) = (2k+1)^2 - 2 (A073577).
1
1, 2, 16, 58, 149, 177, 534, 681, 954, 1045, 1052, 1255, 1367, 1563, 2046, 2074, 2515, 2557, 2564, 2788, 3586, 3593, 3908, 4062, 4552, 5252, 5371, 5385, 6400, 6729, 7443, 7478, 9305, 9375, 9942, 10355, 10411, 10726, 10740, 11286, 11545, 11559, 11832, 11965
OFFSET
1,2
COMMENTS
Sierpiński proved that under Schinzel's hypothesis H this sequence is infinite.
Sierpiński showed that the only quadruple of consecutive primes of the form (2k+1)^2 - 2 are for k = 1 (i.e., 1 and 2 are the only consecutive terms in this sequence).
Numbers k such that the 3 consecutive integers k, k+1 and k+2 belong to A088572. - Michel Marcus, Oct 13 2017
LINKS
Wacław Sierpiński, Remarque sur la distribution de nombres premiers, Matematički Vesnik, Vol. 2(17), Issue 31 (1965), pp. 77-78.
Eric Weisstein's World of Mathematics, Near-Square Prime.
EXAMPLE
The first triples are: k = 1: (7, 23, 47), k = 2: (23, 47, 79), k = 16: (1087, 1223, 1367).
MATHEMATICA
Select[Range[10^4], AllTrue[{(2#+1)^2-2, (2#+3)^2-2, (2#+5)^2-2}, PrimeQ] &]
PROG
(PARI) f(n) = 4*n^2 + 4*n - 1;
isok(n) = isprime(f(n)) && isprime(f(n+1)) && isprime(f(n+2)); \\ Michel Marcus, Oct 13 2017
CROSSREFS
KEYWORD
nonn
AUTHOR
Amiram Eldar, Oct 13 2017
STATUS
approved