login
A293568
E.g.f.: exp(x^3/(x^4 - 1)).
1
1, 0, 0, -6, 0, 0, 360, -5040, 0, -60480, 3628800, -39916800, 19958400, -3113510400, 130767436800, -1318571654400, 3487131648000, -355687428096000, 12813639597158400, -126713646259200000, 1013709170073600000, -85161707377883136000, 2819368492175499264000
OFFSET
0,4
FORMULA
E.g.f.: Product_{k>0} exp(x^(-(4*k-1))).
MATHEMATICA
With[{nn=30}, CoefficientList[Series[Exp[x^3/(x^4-1)], {x, 0, nn}], x] Range[ 0, nn]!] (* Harvey P. Dale, Dec 31 2020 *)
PROG
(PARI) N=66; x='x+O('x^N); Vec(serlaplace(exp(x^3/(x^4-1))))
(PARI) N=66; x='x+O('x^N); Vec(serlaplace(1/prod(k=1, N, exp(x^(4*k-1)))))
CROSSREFS
E.g.f.: Product_{k>0} exp(x^(-(m*k-1))): A293532 (m=2), A293567 (m=3), this sequence (m=4).
Cf. A293526.
Sequence in context: A101109 A353224 A293526 * A192072 A060297 A240315
KEYWORD
sign
AUTHOR
Seiichi Manyama, Oct 12 2017
STATUS
approved