login
A293532
E.g.f.: exp(x/(x^2 - 1)).
5
1, -1, 1, -7, 25, -181, 1201, -10291, 97777, -1013545, 12202561, -151573951, 2173233481, -31758579997, 524057015665, -8838296029291, 164416415570401, -3145357419120721, 65057767274601217, -1391243470549894135, 31671795881695430521, -747996624368605997701
OFFSET
0,4
FORMULA
E.g.f.: Product_{k>=1} 1/(1 + x^k)^(phi(k)/k), where phi() is the Euler totient function (A000010). - Ilya Gutkovskiy, May 25 2019
MATHEMATICA
CoefficientList[Series[E^(x/(x^2 - 1)), {x, 0, 20}], x] * Range[0, 20]! (* Vaclav Kotesovec, Oct 12 2017 *)
PROG
(PARI) N=66; x='x+O('x^N); Vec(serlaplace(exp(x/(x^2-1))))
CROSSREFS
Column k=2 of A293530.
Cf. A088009.
Sequence in context: A366941 A191237 A088009 * A356628 A208823 A197913
KEYWORD
sign
AUTHOR
Seiichi Manyama, Oct 11 2017
STATUS
approved