login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A293499 Number of unlabeled hereditary semiorders on n points. 0
1, 2, 5, 14, 42, 132, 428, 1415, 4730, 15901, 53593, 180809, 610157, 2058962, 6947145, 23437854, 79067006, 266717300, 899693960, 3034814143, 10236853534, 34530252629, 116475001757, 392885252033 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

A semiorder (poset avoiding the subposets 2+2 and 1+3, or an interval order having a representation in which all intervals have the same length) is hereditary if every initial subsequence of the ascent sequence associated to the semiorder by the bijection of Bousquet-Mélou et al. corresponds to a semiorder.

REFERENCES

M. T. Keller and S. J. Young, Hereditary semiorders and enumeration of semiorders by dimension. Preprint (2017).

LINKS

Table of n, a(n) for n=1..24.

M. Bousquet-Mélou, A. Claesson, M. Dukes, and S. Kitaev, (2+2)-free posets, ascent sequences and pattern avoiding permutations, J. Combin. Theory Ser. A 117, 7 (2010), 884-909.

Mitchel T. Keller, Stephen J. Young, Hereditary Semiorders and Enumeration of Semiorders by Dimension, arXiv:1801.00501 [math.CO], (2018)

Index entries for linear recurrences with constant coefficients, signature (8,-23,29,-14,1).

FORMULA

G.f.: -x*(1-6*x+12*x^2-9*x^3+x^4) / ( (x-1)*(x^4-13*x^3+16*x^2-7*x+1) ).

MATHEMATICA

CoefficientList[ Series[(-1 +6x -12x^2 +9x^3 -x^4)/(-1 +8x -23x^2 +29x^3 -14x^4 +x^5), {x, 0, 26}], x] (* or *)

LinearRecurrence[{8, -23, 29, -14, 1}, {1, 2, 5, 14, 42}, 27] (* Robert G. Wilson v, Jan 07 2018*)

CROSSREFS

Cf. A022493.

Sequence in context: A293498 A162746 A148329 * A024175 A152226 A054393

Adjacent sequences:  A293496 A293497 A293498 * A293500 A293501 A293502

KEYWORD

nonn

AUTHOR

Mitchel T. Keller, Oct 10 2017

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 23 09:04 EST 2019. Contains 320420 sequences. (Running on oeis4.)