login
A293477
Composite numbers k = concat(MSD(k),x) such that k' = x', where k' is the arithmetic derivative of k.
1
169, 1219, 1339, 1966, 3959, 7519, 11569, 17845, 35579, 37391, 38579, 77593, 94249, 94319, 95299, 96139, 97271, 97969, 99691, 106159, 107629, 115069, 137533, 150071, 168505, 188297, 247589, 339629, 345911, 352829, 362771, 363191, 365399, 370259, 381779, 382043
OFFSET
1,1
LINKS
EXAMPLE
169' = 69' = 26, so 169 is a term.
3959' = 959' = 144, so 3959 is a term.
MAPLE
with(numtheory): P:=proc(q) local a, k, n, p, x, y; for n from 2 to q do
if not isprime(n) then x:=n mod 10^(ilog10(n)); a:=x*add(op(2, p)/op(1, p), p=ifactors(x)[2]);
if n*add(op(2, p)/op(1, p), p=ifactors(n)[2])=a then print(n); fi; fi; od; end: P(10^6);
CROSSREFS
Cf. A000030 (MSD), A003415 (arithmetic derivative).
Sequence in context: A250988 A289338 A256979 * A264304 A241538 A231974
KEYWORD
nonn,base,easy
AUTHOR
Paolo P. Lava, Oct 10 2017
STATUS
approved