login
a(n) = Sum_{k=0..n} (-1)^k * binomial(n, k) * q(k), where q(k) is A000009 (partitions into distinct parts).
11

%I #9 May 08 2018 12:54:57

%S 1,0,0,-1,-3,-7,-14,-25,-41,-64,-100,-165,-294,-550,-1023,-1795,-2823,

%T -3658,-2882,2873,20435,62185,148863,314008,613957,1155794,2175823,

%U 4244026,8753538,19006490,42471787,95234575,210395407,453413866,949508390,1931939460

%N a(n) = Sum_{k=0..n} (-1)^k * binomial(n, k) * q(k), where q(k) is A000009 (partitions into distinct parts).

%H Vaclav Kotesovec, <a href="/A293467/b293467.txt">Table of n, a(n) for n = 0..1000</a>

%H Vaclav Kotesovec, <a href="/A293467/a293467.jpg">Graph: a(n)/2^n (40000 terms)</a>

%t Table[Sum[(-1)^k * Binomial[n, k] * PartitionsQ[k], {k, 0, n}], {n, 0, 50}]

%Y Cf. A025147, A266232, A294467, A294468.

%Y Cf. A218481, A294466, A281425, A095051.

%K sign

%O 0,5

%A _Vaclav Kotesovec_, Oct 09 2017