|
|
A293466
|
|
a(n) = Sum_{k=0..n} 2^k * q(k), where q(k) is A000009 (partitions into distinct parts).
|
|
1
|
|
|
1, 3, 7, 23, 55, 151, 407, 1047, 2583, 6679, 16919, 41495, 102935, 250391, 610839, 1495575, 3592727, 8573463, 20632087, 48943639, 116052503, 275436055, 648729111, 1521144343, 3567964695, 8332694039, 19405656599, 45175460375, 104768131607, 242207085079
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
LINKS
|
Table of n, a(n) for n=0..29.
|
|
FORMULA
|
a(n) ~ 2^(n-1) * exp(Pi*sqrt(n/3)) / (3^(1/4) * n^(3/4)).
|
|
MATHEMATICA
|
Table[Sum[2^k * PartitionsQ[k], {k, 0, n}], {n, 0, 30}]
|
|
CROSSREFS
|
Cf. A025147, A259400, A293465.
Sequence in context: A203253 A179491 A219167 * A231722 A168612 A332866
Adjacent sequences: A293463 A293464 A293465 * A293467 A293468 A293469
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Vaclav Kotesovec, Oct 09 2017
|
|
STATUS
|
approved
|
|
|
|