login
A293465
a(n) = Sum_{k=0..n} (-1)^k * 2^k * q(k), where q(k) is A000009 (partitions into distinct parts).
2
1, -1, 3, -13, 19, -77, 179, -461, 1075, -3021, 7219, -17357, 44083, -103373, 257075, -627661, 1469491, -3511245, 8547379, -19764173, 47344691, -112038861, 261254195, -611161037, 1435659315, -3329070029, 7743892531, -18025911245, 41566759987, -95872193485
OFFSET
0,3
LINKS
FORMULA
a(n) ~ (-1)^n * 2^(n-1) * exp(Pi*sqrt(n/3)) / (3^(5/4) * n^(3/4)).
a(n) ~ (-1)^n * 2/3 * 2^n * A000009(n).
MATHEMATICA
Table[Sum[(-1)^k * 2^k * PartitionsQ[k], {k, 0, n}], {n, 0, 30}]
CROSSREFS
Sequence in context: A158016 A281998 A294676 * A353251 A271924 A354427
KEYWORD
sign
AUTHOR
Vaclav Kotesovec, Oct 09 2017
STATUS
approved