login
A293434
a(n) is the sum of the proper divisors of n that are Jacobsthal numbers (A001045).
5
0, 1, 1, 1, 1, 4, 1, 1, 4, 6, 1, 4, 1, 1, 9, 1, 1, 4, 1, 6, 4, 12, 1, 4, 6, 1, 4, 1, 1, 9, 1, 1, 15, 1, 6, 4, 1, 1, 4, 6, 1, 25, 1, 12, 9, 1, 1, 4, 1, 6, 4, 1, 1, 4, 17, 1, 4, 1, 1, 9, 1, 1, 25, 1, 6, 15, 1, 1, 4, 6, 1, 4, 1, 1, 9, 1, 12, 4, 1, 6, 4, 1, 1, 25, 6, 44, 4, 12, 1, 9, 1, 1, 4, 1, 6, 4, 1, 1, 15, 6, 1, 4, 1, 1, 30
OFFSET
1,6
FORMULA
a(n) = Sum_{d|n, d<n} A147612(d)*d.
a(n) = A293432(n) - (A147612(n)*n).
EXAMPLE
For n = 15, whose proper divisors are [1, 3, 5], all of them are in A001045, thus a(15) = 1 + 3 + 5 = 9.
For n = 21, whose proper divisors are [1, 3, 7], both 1 and 3 are in A001045, thus a(21) = 1 + 3 = 4.
For n = 21845, whose proper divisors are [1, 5, 17, 85, 257, 1285, 4369], only 1, 5, 85 are in A001045, thus a(21845) = 1 + 5 + 85 = 91.
MATHEMATICA
With[{s = LinearRecurrence[{1, 2}, {0, 1}, 24]}, Table[DivisorSum[n, # &, And[MemberQ[s, #], # != n] &], {n, 105}]] (* Michael De Vlieger, Oct 09 2017 *)
PROG
(PARI)
A147612aux(n, i) = if(!(n%2), n, A147612aux((n+i)/2, -i));
A147612(n) = 0^(A147612aux(n, 1)*A147612aux(n, -1));
A293434(n) = sumdiv(n, d, (d<n)*A147612(d)*d);
CROSSREFS
Cf. also A293436.
Sequence in context: A222371 A222479 A285788 * A091570 A116669 A016523
KEYWORD
nonn
AUTHOR
Antti Karttunen, Oct 09 2017
STATUS
approved