login
A293415
Decimal expansion of the minimum ripple factor for a seventh-order, reflectionless, Chebyshev filter.
8
2, 1, 8, 7, 0, 7, 7, 2, 3, 9, 7, 1, 5, 5, 9, 3, 9, 7, 4, 1, 9, 1, 1, 8, 0, 2, 0, 0, 6, 7, 2, 7, 2, 3, 4, 7, 6, 0, 3, 3, 7, 2, 7, 6, 9, 6, 6, 8, 1, 4, 2, 0, 8, 6, 6, 5, 0, 8, 0, 6, 6, 4, 3, 6, 3, 5, 2, 1, 1, 6, 7, 2, 3, 1, 7, 1, 1, 3, 7, 7, 5, 4, 3, 8, 7, 3, 2, 1, 3, 6, 2, 5, 7, 5, 7, 3, 8, 5, 8, 5, 9, 5, 9, 4, 3, 5, 7, 8
OFFSET
0,1
COMMENTS
This is the smallest ripple factor (a constant) for which the prototype elements of the seventh-order generalized reflectionless filter topology (see Morgan, 2017) needs no negative elements. It is also the ripple factor for which the first two and last two Chebyshev prototype parameters (of the canonical ladder, or Cauer, topology) are equal.
Other related sequences in the OEIS are the decimal and continued fraction expansions of the limiting ripple factors for third, fifth, seventh, and ninth order, as well as for the limiting case where the order diverges to infinity. As these ripple factors do approach a common limit very quickly, the sequences for the fifth- and higher-order constants share the same initial terms, to greater length as the order increases.
There are simple radical expressions for the third- and fifth-order constants (see formulas). Further, the third-order constant is a quadratic irrational, thus having a repeating continued fraction expansion. I do not know if such simple expressions or patterns exist for the higher-order constants or the limiting (infinite-order) constant.
REFERENCES
M. Morgan, Reflectionless Filters, Norwood, MA: Artech House, pp. 129-132, January 2017.
LINKS
FORMULA
Equals sqrt(exp(4*arctanh(exp(-2*7*arcsinh(sqrt(1/2*sin(Pi/7)tan(Pi/7))))))-1).
EXAMPLE
0.2187077239...
MATHEMATICA
RealDigits[Sqrt[Exp[4 ArcTanh[Exp[-2*7*ArcSinh[Sqrt[1/2*Sin[Pi/7] Tan[Pi/7]]]]]] - 1], 10, 100][[1]]
PROG
(PARI) sqrt(exp(4*atanh(exp(-2*7*asinh(sqrt(1/2*sin(Pi/7)*tan(Pi/7))))))-1) \\ Michel Marcus, Oct 16 2017
(Magma) R:= RealField(); Sqrt(Exp(4*Argtanh(Exp(-2*7*Argsinh(Sqrt(1/2* Sin(Pi(R)/7)*Tan(Pi(R)/7))))))-1); // G. C. Greubel, Feb 15 2018
CROSSREFS
Decimal expansions (A020784, A293409, A293415, A293416, A293417) and continued fractions (A040021, A293768, A293769, A293770, A293882) for third-, fifth-, seventh-, ninth-order and the limiting "infinite-order" constant, respectively.
Sequence in context: A214562 A280757 A298641 * A197018 A082532 A049250
KEYWORD
cons,easy,nonn
AUTHOR
Matthew A. Morgan, Oct 15 2017
STATUS
approved