login
A293388
Square array A(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of g.f. Product_{i>0} (1 + Sum_{j=1..k} (-1)^j*j*x^(j*i))^2.
3
1, 1, 0, 1, -2, 0, 1, -2, -1, 0, 1, -2, 3, 2, 0, 1, -2, 3, -2, 1, 0, 1, -2, 3, -8, 1, 2, 0, 1, -2, 3, -8, 7, -6, -2, 0, 1, -2, 3, -8, 15, -6, 14, 0, 0, 1, -2, 3, -8, 15, -14, 17, -20, -2, 0, 1, -2, 3, -8, 15, -24, 17, -14, 22, -2, 0, 1, -2, 3, -8, 15, -24, 27
OFFSET
0,5
LINKS
EXAMPLE
Square array begins:
1, 1, 1, 1, 1, ...
0, -2, -2, -2, -2, ...
0, -1, 3, 3, 3, ...
0, 2, -2, -8, -8, ...
0, 1, 1, 7, 15, ...
0, 2, -6, -6, -14, ...
CROSSREFS
Columns k=0..1 give A000007, A002107.
Rows n=0 gives A000012.
Main diagonal gives A293389.
Product_{i>0} 1/(1 + Sum_{j=1..k} (-1)^j*j*x^(j*i))^m: A292577 (m=-2), A293307 (m=-1), A293305 (m=1), this sequence (m=2).
Sequence in context: A091064 A373005 A275760 * A268833 A293386 A322522
KEYWORD
sign,tabl
AUTHOR
Seiichi Manyama, Oct 07 2017
STATUS
approved